
Computational Approaches for Efficient Scheduling
of Steel Plants as Demand Response Resource

Xiao Zhang⇤, Gabriela Hug†, Zico Kolter‡, and Iiro Harjunkoski§
⇤ Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, USA

† Information Technology and Electrical Engineering, ETH Zurich, Switzerland
‡ Computer Science, Carnegie Mellon University, Pittsburgh, USA

§ ABB Corporate Research, Ladenburg, Germany

Abstract—Demand response is seeing increased popularity
worldwide and industrial loads are actively taking part in this
trend. As a host of energy-intensive industrial processes, steel
plants have both the motivation and potential to provide demand
response. However, the scheduling of steel plants is very complex
and the involved computations are intense. In this paper, we
focus on these difficulties and propose methods such as adding
cuts and implementing an application-specific branch and bound
algorithm to make the computations more tractable.

Index Terms—Branch and bound algorithm, mixed integer
programming, demand response, steel plant scheduling, resource
task network.

I. INTRODUCTION

Demand response is becoming increasingly important in the
electric power system to support the integration of variable
renewable generation, thereby contributing to cutting down the
carbon footprint of the electric power system. Load shifting
allows for reducing peak load and adjusting the load to the
level of available generation. Demand response can also help
in balancing the intermittent wind and solar power by utilizing
the flexibility provided by loads. With its great potential to
enhance the power system’s operational flexibility, demand re-
sponse has gained significant attention in recent years [1]–[3].
Demand response can be provided by residential, commercial,
and industrial loads. For example, there have been discussions
and studies about demand response provided by buildings [4],
storages [5], data centers [6], [7], residential areas [8], alu-
minum smelters [9], [10], air separation units [11], as well as
steel plants [12].

However, for many potential players, especially the smaller
loads in the residential and commercial areas, it may not be
profitable to participate in demand response, as the payments
are usually not high enough for them to justify the investment
in implementing the platforms for participation. Meanwhile,
industrial loads, given their large energy consumption, are
ideal candidates for providing demand response as they have
both the potential to provide demand response as well as
the motivation to do so [13]–[15]: most industrial plants are
already equipped with the infrastructures for control, measure-
ment, and communications that are required for demand re-
sponse providers; many industrial loads are able to offer large,
fast, and accurate adjustments in their power consumption;

The authors would like to acknowledge the financial support by ABB.

the demand response programs are also financially appealing
to the industrial plants, especially to those energy-intensive
plants who treat demand response as an opportunity to increase
their profits by making full use of their assets. The range of
industrial loads that can support the operation of the electric
power system include aluminum smelting pots, steel melting
furnaces, fans, freezers, pumps, etc.

On the other hand, the computations associated with indus-
trial loads demand response provision are often intense. The
goal of the industrial plants is to optimize the schedule of
production activities while fitting their power consumption to
the need of power system operation. However, the industrial
production process is usually very complex with multiple
process stages, and the raw material needs to be processed
by each of these stages following the correct sequence. There
are many critical constraints involved in the production, e.g.
the intermediate products need to be processed quickly to
prevent expensive reheating and the industrial plants also need
to satisfy the orders/needs from their customers with respect
to the final products quantity and quality. Consequently, the
industrial scheduling is usually a large scale optimization
problem with a lot of integer variables that is difficult to solve.
There has been a significant number of papers studying the
efficient modeling and computing for industrial scheduling,
with the intention to address the computational difficulties.
For example, in [16], the long-term scheduling of steel plants
is studied, and instead of formulating one large, intractable
MIP problem, a decomposition strategy is proposed to generate
smaller problems that can often be solved to optimality.
In [17], an alternative continuous time formulation focused on
the relative positions of tasks and time periods is presented,
which improves significantly the computation time of the
steel manufacturing short-term scheduling problem discussed
in [18]. In [19], a resource-task network is used to pro-
vide a generic modeling framework for short-term production
scheduling under energy constraints, and three alternative
process models for steel plant scheduling are proposed, in
which a trade-off is observed between accurate representation
of steel manufacturing and computational performance.

In this paper, we focus on the optimal scheduling of steel
plants to provide demand response and propose approaches
to overcome the associated computational difficulties. The
scheduling models proposed in [19] with a finer time grid
resolution cannot be solved to optimality within hours by
commercial solvers, as the number of binary variables and

Figure 1. Production process of steel manufacturing [19]

constraints increase with the number of time slots. However, a
finer time grid is desired to accurately represent the production
activities. In this paper, we propose methods to make the
relevant computations more tractable.

The remaining of the paper is organized as follows: Section
II introduces the considered scheduling problem. Section III
explains the resource task network modeling framework and
introduces the mathematical formulations for the scheduling
problem. In Section IV, the computational approaches are
presented. The case study of a typical steel plant is discussed
in Section V to demonstrate the effectiveness of the proposed
approaches, based on which the conclusions are drawn in
Section VI.

II. STEEL PLANTS SCHEDULING

Figure 1 displays the typical process of steel manufacturing.
There are four process stages and each process stage is referred
to by the operation equipment in this stage, i.e. electric arc
furnaces (EAF), argon oxygen decarburization units (AOD),
ladle furnaces (LF), and continuous casters (CC). The input
to the process is the raw material, which is solid metal scrap
recycled from abandoned steel products such as discarded cars.
The output from the process is the final products, i.e. the
slabs. The EAF melts the raw material into molten metal; the
AOD removes the impurities and reduces the carbon content
from the molten metal; the LF further refines the molten metal
and transport the molten metal to the CC; the CC casts the
refined molten metal into slabs with different shapes. The
final products have different characteristics such as grade, slab
width, thickness, etc. according to the needs of the customers.
Different final products require different chemical ingredients
and different processing times for each of the process stages.

The process equipment in the first three stages operate in
batch mode, i.e. these equipment (e.g. furnace) can process a
certain amount of metal at one time, and that quantity of metal
remains consistent along different stages. Each such amount
of metal is termed as a heat. By heat, we could quantify the
throughput of the steel plant. For instance, a medium sized
steel plant is able to deliver 20 heats of final products within
one day. Unlike the first three stages, the casting stage operates
continuously. However, due to the extreme conditions in the
caster, it can only process a limited number of heats, after
which it needs maintenance such as changing the caster mold
and tundish before further operation, to ensure desired steel
quality and dimension. Hence, the steel plant operators usually
combine several heats sharing the same or very similar grade
characteristics and shape requirements to form a campaign (a

group of heats), and cast these heats together. The casters are
maintained between casting two campaigns. The casting order
for the heats within one campaign should follow certain rules
and the casting sequence must not be interrupted.

The steel manufacturing is highly energy-intensive but it
also has the flexibility in scheduling its production activities
to follow a desired energy consumption curve over time.
Besides, a steel plant can also adjust its loading level by
switching the taps of the transformers that supply power for its
equipment, which enables the provision of spinning reserve.
However, steel manufacturing has been recognized as one of
the most difficult industrial processes for scheduling, as the
production of steel is a large-scale, multi-product, multi-stage
batch process that involves parallel equipment and critical
production-related constraints.

III. MATHEMATICAL MODELING

The resource-task network (RTN) modeling framework has
been widely adopted to model and optimize the scheduling of
industrial plants. Same as in [12], the following mathematical
formulations for steel plant scheduling are developed based on
the RTN modeling framework proposed in [19].

A. Resource-task Network Modeling

The RTN modeling framework is able to explicitly represent
the complex chemical processes by mathematical formulations
in a systematic way. The RTN of a steel plant is illustrated
in Fig. 2, in which the resources are denoted by circles and
the tasks are represented by rectangles. The resource is a very
general concept and it includes all entities that are involved
in the production such as equipment units, intermediate and
final products, and utilities such as electricity. The set of
resources is denoted by S, i.e. S = {EAF, AOD, LF, CC} [
{EAs

h,EAd
h,ALs

h,ALd
h,LCs

h,LCd
h,Hh|h 2 H} [{EL} with

H as the set of heats to produce. Intermediate products at
different locations (start or destination of the corresponding
transfer) are treated as different resources and are specified by
superscripts s or d, respectively. For example, ALd

h represents
the intermediate product between stage AOD and LF that has
already been transferred to the LF stage and is waiting to be
processed.

We use a discrete time grid with uniform slot width of t0 and
we use T to denote the total number of time slots. A matrix
Y 2 R|S|⇥T is used to denote the available amounts of these
resources at all time slots, in which |S| is the size of S. Each
element in Y is a continuous variable, ys,t, which represents
the available amount of resource s at time t. For example,
yEAF,t = 3 means there are three furnaces available at time
slot t; yEL,t = 50 MWh means 50 MWh of electric energy is
used by the steel plant during time slot t. Due to their physical
meanings, most ys,t can actually only take discrete values
such as 0, 1, or 2. However, they are modeled as continuous
variables since a larger number of discrete variables generally
leads to a problem that is more difficult to solve. As discussed
later the constraints in the optimization model will enforce
these variables to take discrete values.

H2LCd
2

E1

EH

EAd
1

EAd
H

A1

AH

ALd
1

ALd
H

AOD

L1

LH

LF

C1

C2

Setup

H1

Cast_G1_CC1

Cast_GG_CC1

Cast_GG_CC2

HH

EL

Casting Group 1
includes heats H1-H2

EAs
1

EAs
H

TranEA1

TranEAH

TranAL1

TranALH

ALs
1

ALs
H

LCs
1

LCs
H

TranLC1

TranLCH

EAF

Resource

LCd
1

LCd
H

Task

CC1

CC2

Figure 2. Resource task network for a steel plant.

There are seven kinds of tasks in total: four operational tasks
at each of the four stages and three transfer tasks between the
stages. For all kinds of tasks except for the casting task in
the last stage, the number of tasks is equal to the number
of heats to produce; these tasks are denoted by the task type
with the corresponding heat as subscript, e.g. Eh stands for
the melting of heat h in the EAF stage, and EAh (without
superscript s or d) denotes the transfer of heat h between
stage EAF and AOD. Meanwhile, the casting task is denoted
as Cg,u which stands for the casting of group g by caster unit
u. As mentioned before, the tasks in the CC stage are executed
by group instead of by heat. Besides, since generally different
casters are designed for casting different slabs, we need to
specify the caster for the casting task. In other words, Cg1,u1

is different from Cg1,u2 , e.g. their processing durations might
be different due to the different casters. We use K to denote
the set of tasks, i.e. K = {Eh,EAh,Ah,ALh,Lh,LCh|h 2
H} [{Cg,u|g 2 G, u 2 CC}, with G and CC as the set of
casting campaign groups and available casters, respectively.

The starting times of all the tasks are denoted by a |K|-by-T
binary matrix X , in which |K| is the size of K. Each element
of X is a binary variable, xk,t, which represents whether task
k starts at time slot t. For example, xEh,t = 1 means the
processing of heat h in stage EAF starts at time slot t; only
one out of xEh,t, t = {1, . . . , T} is non-zero since this task
only takes place once.

In Fig. 2, the networks of how each task interacts with each
resource are represented by arrows. For each task k 2 K,
its interaction parameter �k is a |S|-by-(⌧k + 1) matrix that
quantifies how much task k consumes/generates of each of the
resources as it proceeds, in which ⌧k denotes its duration as a
number of time slots. For example, its element �k

s,1 quantifies
the interaction between task k and resource s at the beginning
of the first time slot during this task, and �k

s,⌧k+1 quantifies
the interaction at the end of the last time slot. A zero element
means that there is no interaction, and �k is very sparse
as a task typically only interacts with a few resources. To
better understand the interaction parameters, an example for

= 0 1 2 3 T

Power = 80 MW
Duration = 45 min

EL EAh
sEAF

t0 = 15 min

»
»
»
»
»
»

¼

º

«
«
«
«
«
«

¬

ª -1 0 0 1

 0 0 0 1

 20 20 20 0

EAF

EAh
s

EL [MWh]

hE' =

... ...

... ...

... ...

... ...

Figure 3. Illustration of interaction parameters for a melting task.

a melting task is given in Fig. 3: the duration of the melting
task is 45 minutes and the time slot width is t0 = 15 minutes.
This task interacts with resources EAF, EL and EAs

h, hence
its interaction parameter matrix are all zeros except for these
three rows. At the beginning of the task, it uses one furnace
so it reduces EAF by one. Meanwhile at the end of the task, it
releases that furnace hence EAF is increased by one; EAs

h is
also increased by one as it has just been generated. Besides,
the melting task consumes electric energy at every time slot
within its duration.

B. Mathematical Formulations

For the presentation of the following computational ap-
proaches, here we summarize the relevant formulations given
in [12].

1) Resource Balance: The resource balance equation de-
scribes the interaction between each resource and its relevant
tasks, as in

ys,t = ys,t�1 +
X

k2K

⌧kX

✓=0

�k
s,✓ · xk,t�✓ 8s 2 S¬{EL}, 8t (1)

in which the value of resource s at time slot t is equal to
its previous value at t � 1 adjusted by the amounts gener-
ated/consumed by all the tasks, and S¬{EL} stands for the set
of all the resources except EL. Only nonzero �k

s,✓ implies

actual interaction. Besides, the interaction occurs at time slot
t only if task k starts ✓ earlier than t (xk,t�✓ = 1), with ✓  ⌧k.
Equation (1) enforces the continuous variable ys,t to only take
integer values, because: (1) the interaction parameters �k

s,✓ for
these resources are integers, (2) xk,t�✓ are binary variables,
and (3) the initial values for the resources are integers (zero
or the number of available equipment).

Similarly, the electric energy usage of the steel plant is
calculated as

yEL,t =
X

k2K

⌧kX

✓=0

�k
EL,✓ · xk,t�✓ 8t (2)

where �k
EL,✓ is the electricity used by task k at the ✓-th time

slot within its execution.
2) Task Execution: The following constraints make sure

that each heat is processed exactly once by all types of tasks
within the scheduling horizon, as in

XK¬CC T =
0
XCu T = 1 8u 2 CC

(3)

in which XK¬CC denotes X without the rows involving the
casting tasks; XCu denotes the rows of X corresponding to
casting tasks by caster u; T means a vector of 1s with length
T and stand for vectors of 1s with appropriate lengths.

Of course, only one of Cg1,u1 and Cg1,u2 will take place as
group g1 should be casted exactly once.

3) Waiting Time: In steel plant operations, the transfer
tasks are usually enforced to be executed immediately after
the completion of its preceding processing task. This can be
enforced by setting

YEAs = 0 (4)

in which YEAs stands for the rows of Y corresponding to
the intermediate products EAs; 0 is a zero matrix with the
same dimensions as YEAs . The above constraint implies that
all intermediate products EAs do not stay at any time slot.
Similar constraints apply for the intermediate products ALs

and LCs.
To simplify the problem, we assume the transfer tasks are

independent of the specific heats and the exact locations of
the units. The transfer times are denoted as wEA, wAL, and
wLC, and the maximum allowable transportation times which
prevent adverse cooling effects are denoted as w̄EA, w̄AL, and
w̄LC. The maximum waiting time constraint for intermediate
products should be satisfied, in order to avoid the expensive
reheating:

YEAd
h

T  (w̄EA � wEA)

t0
(5)

in which YEAd stands for the rows of Y corresponding to
intermediate products EAd before the transfer. The left side
of the constraint corresponds to the number of time slots
during which the intermediate product is waiting before being
processed. Similar constraints apply for intermediate products
ALd and LCd.

4) Product Delivery: The final products should be available
at the end of the time horizon, which is enforced by setting

yHh,T = 1 8h (6)

in which yHh,T stands for the availability of the final product
for heat h at the end of the scheduling horizon.

5) Objective Function: The objective of the scheduling is
to minimize the total electricity cost of the steel production.
Given the energy price vector �EL 2 RT , the overall optimiza-
tion problem is formulated as

minimize
X

YEL�EL

subject to (1)� (6)

xs,t 2 {0, 1}, ys,t 2 [0, ȳs], 8s, 8t
in which ȳs is the upper bound for the available amount of
resource s. For example, ȳEAF equals to the number of EAF
furnaces and ȳEL equals to the summation of energy usage by
all the equipment units in one time slot.

IV. COMPUTATIONS OF STEEL PLANTS SCHEDULING

In the RTN-based scheduling model described above, the
computation difficulty largely depends on the problem scale
and the time resolution. A 5-minute resolution is desired to
accurately model the production activities, but will result in a
MIP problem with thousands of binary variables which cannot
be solved to optimality even within hours by commercial MIP
solvers. Meanwhile, steel plant operators cannot afford such a
long computation time, as they constantly need to make fast
decisions to adapt the production plans. We try to improve the
computations in the following two ways: from the modeling
aspect, we add additional constraints as cuts to reduce the
search space for the MIP problem, and from the algorithmic
aspect, we design a tailored branch and bound algorithm that
utilizes the knowledge from steel manufacturing to speed up
the algorithm.

A. Additional constraints as cuts

In steel manufacturing, there are many tasks that are equiva-
lent to each other, e.g. the decarburization of molten metal for
two similar batches of products. We can impose an enforced
processing order for these tasks, thus the search space of the
MIP problem is reduced. Several other types of constraints
can also be imposed which reduce the feasible region but with
potential sacrifice to the degree of optimality, an example is to
restrict the start time of EAF tasks to time intervals that have
lower energy price expectations. Here we consider imposing
processing orders for the tasks.

In steel manufacturing, the casting sequence for heats be-
longing to the same casting group are pre-specified - this pre-
specified processing sequence results from expert experiences
or casting optimization. Intuitively, that processing sequence
should also apply to the other three stages. For instance,
suppose the casting group G1 consists of heats 1, 2, and 3,
and they will be casted one by one sequentially, which means
that the intermediate product LC1 will be casted first. Conse-
quently, LC1 should be generated first, i.e. heat 1 should be

processed before the other two heats in the 3rd stage. Hence,
we can define a set of ordered tasks, denoted by O, whose
processing sequences are pre-specified. For instance, O =
{(E1,E2), (E2,E3), (A1,A2), (A2,A3), (L1,L2), (L2,L3)} for
scheduling G1 of heats 1, 2 and 3. The imposed additional
constraints (cuts) on processing order enforcement can be
written as follows:

X

t0t

(xk1,t0 � xk2,t0) � 0 8t, (k1, k2) 2 O (7)

in which the ordered tasks set O considers the processing of
heats belonging to the same group for each of the first three
stages. In steel manufacturing practice, the above additional
constraint is also beneficial as it follows the first-in-first-
out principle and reduces the chance of over-waiting and re-
heating for the intermediate products.

B. Tailored branch and bound algorithm

The MIP problems in industrial scheduling are usually
solved by commercial solvers [14], [20]. These commercial
solvers are powerful, but are designed to handle general opti-
mization problems. We develop a tailored branch and bound
algorithm to utilize the special features in steel manufacturing:
the heats belonging to the same campaign group are generally
processed close to each other.

The branch and bound algorithm is presented in Fig. 4
in which q and q2 are priority queues that store the relax-
ation solutions at each iteration and the achieved feasible
integer solutions, respectively; q provides the lower bounds
for the mixed-integer minimization problem, while q2 pro-
vides the upper bounds. SolveRelaxation(C) is a function
that takes input C and solves the relaxation of the original
problem plus constraints in C; the relaxation is a linear
programming problem and we solve it by using CPLEX’s
LP solver; the function returns (f, x⇤

, y

⇤
, C), i.e. the optimal

objective value, the optimal values of relaxed integer vari-
ables and continuous variables, as well as the corresponding
constraints C. The function input C is actually defined as
C = [(ak1, bk1), (ak2, bk2), . . . , (aK , bK)], which specifies the
start times for each task. For instance, (ak1, bk1) restricts the

1: procedure TailoredBranchBound
2: q Priority-Queue() . pops largest objective first
3: q2 Priority-Queue() . pops smallest objective first
4: q.push(SolveRelaxation({ }))
5: q2.push(FindIntegerSolutionHeuristics())
6: while q not empty do
7: (f, x, y, C) q.pop()
8: q2.push(Rounding((f, x, y, C)))
9: if q2.first - f  ✏ then

10: return q2.pop()
11: else
12: for Ci in BranchNodes(C) do
13: q.push(SolveRelaxation(Ci))
14: end for
15: end if
16: end while
17: end procedure

Figure 4. Tailored branch and bound algorithm

1: function BranchNodes(C)
2: if C == { } then
3: return [(0, T), . . . , (0, T)]

4: else
5: k

⇤ argmaxk2L.keys(bk � ak)

6: if bk⇤ � ak⇤
> ✏d then

7: m

⇤ int(bk⇤�ak⇤
2)

8: {k : (da, db)} L[k

⇤
]

9: C1 [. . . , (ak⇤
,m

⇤
), (ak⇤

+ da,m
⇤
+ db), . . .]

10: C2 [. . . , (m

⇤
, bk⇤

), (m

⇤
+ da, bk⇤

+ db), . . .]

11: return {C1, C2}
12: else
13: k

⇤ argmaxk2K(bk � ak)

14: m

⇤ int(bk⇤�ak⇤
2)

15: C1 [. . . , (ak⇤
,m

⇤
), . . .]

16: C2 [. . . , (m

⇤
, bk⇤

), . . .]

17: return {C1, C2}
18: end if
19: end if
20: end function

Figure 5. Branch by leader heats

start time of task k1 to be between ak1 and bk1 - the constraint
is actually implemented by setting the upper bounds for xk1,t

as zero for t outside of (ak1, bk1) while leaving the upper
bounds for other t as one, i.e.

xk1,t =

(
1, if ak1  t < bk1

0, otherwise

GetIntegerSolutionHeuristics() is a heuristics method that
packs all the tasks to the earliest available equipment units
to get a feasible integer solution, which serves as the initial
upper bound for the algorithm. Rounding() tries to round
the relaxation solution to be integer, and returns the integer
solution if it is feasible.

In order to enforce the heats belonging to the same cam-
paign group be processed close to each other, we term the first
heat in each campaign group as the leader, and call the other
heats belonging to the same group as its followers. Similar
to the discussions in Section IV-A, we require the leader to
be processed first, and require its followers to be processed
within the time ranges calculated according to their processing
time durations. For example, consider group G1 of heats 1, 2
and 3 in the EAF stage (with two EAF units). The leader
here is task E1, and suppose its start time is within (a, b) at
a certain node in the branch and bound algorithm. As there
are two available furnaces, we require its followers E2 to be
started between (a, b + ⌧E1) and E3 to be started between
(a + ⌧E1 , b + ⌧E1). The principle of this requirement is to
enforce the offsets and delays as if these followers are packed
sequentially to the available equipment units. The relationship
of start times for the above example can be described by the
following dictionary L that maps the leader to its followers
and the corresponding offsets:

L[kE1] = {kE2 : (0, ⌧E1), kE3 : (⌧E1, ⌧E1)}

With this concept of leader and followers and the restriction
on start time described above, instead of branching on the start
time intervals for all tasks, we can only branch on the leader
tasks and restrict the start times for its follower tasks according

to a pre-constructed L. The proposed branching method is
described in Fig. 5 with parameter ✏d as the threshold to
switch between branching by leader tasks and branching by
all tasks. This method will greatly reduce the complexity of
the branching procedure.

V. NUMERICAL STUDIES

Numerical studies on the daily scheduling for a typical
steel plant are presented in this section to demonstrate the
effectiveness of the proposed methods.

A. Problem Parameters

The steel plant layout and parameters are taken from the
typical scheduling example in [19]: there are two parallel units
for each of the four stages, and Table I lists the nominal power
consumption rates of these units; the group correspondences
of the heats to produce are given in Table II, and Table III
shows their nominal processing times; the transfer times wEA,
wAL, and wLC are 10, 4, and 10 minutes, respectively, and
the maximum waiting times w̄EA, w̄AL, and w̄LC are 240, 240,
and 120 minutes; the caster setup times are 70 minutes for
CC1 and 50 minutes for CC2, which are the times needed for
equipment maintenance between casting two groups of heats.
From these tables we can tell that the EAF is the most energy-
intensive process stage. The hourly energy prices for the case
studies are taken from MISO, as displayed in Fig 6(c).

B. Computational Results

Table IV presents the computational results for the methods
proposed in Section IV: the column Groups gives the cam-
paign groups to produce, e.g. the first row denotes scheduling
groups 1 and 2 with the heats as indicated in Table II; the
column c0 stands for solving the original model by CPLEX’s
MIP solver, while the column c1 stands for the method
proposed in Section IV-A and the column b1 denotes the
tailored branch and bound algorithm proposed in Section IV-B
(✏d is chosen as 4); the row Obj gives the final objective value
of the MIP problem; the row CPU shows the computation
time for the corresponding test case, where the maximum
computation time limit is set to 7200s; the row lpNum gives the
iteration number of the solving process, where the maximum
iteration number is set to 10000. Note that for the test case G1-
5, the relaxation solution by CPLEX happens to be a feasible
integer solution, hence the corresponding lpNum is 0.

From the computational results displayed above, we can
observe the following: (1) by imposing additional constraints,
method c1 reduces the computation time as well as the
iteration number, and the final objective values remain the
same except for a 0.005% increase for case G1-3; (2) the

TABLE I. NOMINAL POWER CONSUMPTIONS [MW] [19]

equipment EAF1 EAF2 AOD1 AOD2 LF1 LF2 CC1 CC2

power 85 85 2 2 2 2 7 7

TABLE II. STEEL HEAT/GROUP CORRESPONDENCE [19]

group G1 G2 G3 G4 G5 G6

heats H1�H4 H5�H8 H9�H12 H13�H17 H18�H20 H21�H24

TABLE III. NOMINAL PROCESSING TIMES [MIN] [19]

heats EAF1 EAF2 AOD1 AOD2 LF1 LF2 CC1 CC2

H1�H4 80 80 75 75 35 35 50 50
H5�H6 85 85 80 80 40 40 60 60
H7�H8 85 85 80 80 20 20 55 55
H9�H12 90 90 95 95 45 45 60 60
H13�H14 85 85 85 85 25 25 70 70
H15�H16 85 85 85 85 25 25 75 75
H17 80 80 85 85 25 25 75 75
H18 80 80 95 95 45 45 60 60
H19 80 80 95 95 45 45 70 70
H20 80 80 95 95 30 30 70 70
H21�H22 80 80 80 80 30 30 50 50
H23�H24 80 80 80 80 30 30 50 60

TABLE IV. BRANCH AND BOUND RESULTS WITH t0 = 15MIN

Groups c0 c1 b1

G1-2
Obj(k$) 24.553 24.553 24.698
CPU(s) 5.8 3.7 6.2
lpNum 2460 1985 57

G1-3
Obj(k$) 39.306 39.308 39.665
CPU(s) 155.4 60.7 50.0
lpNum 9071 3835 228

G1-4
Obj(k$) 57.857 57.857 58.694
CPU(s) 60.4 42.7 197.8
lpNum 3852 2745 280

G1-5
Obj(k$) 69.737 69.737 70.194
CPU(s) 4.3 7.2 861.0
lpNum 0 0 478

G1-6
Obj(k$) 86.352 86.352 86.799
CPU(s) 104.9 80.4 2737.6
lpNum 3698 2631 725

tailored branch and bound algorithm b1 is able to greatly
reduce the iteration number, but the final objective value sees
an increase of around 1%. The optimality loss suffered by
b1 can be explained by the restriction that we require the
heats in the same group be processed close to each other. For
example, Fig. 6 displays the scheduling results comparison
for test case G1-2, where method b1 schedules the LF/CC
processing of heats 5, 6, 7 and 8 close to the EAF/AOD stages,
which loses the opportunity to utilize the price valley around
hours 12-17. Also note that the computation time for a single
iteration of method b1 is much longer than that of c0 or c1
- this is due to the computation overhead with calling the LP
solver, while the solving process of the CPLEX MIP solver
has been coherently optimized. Hence, one has to be careful
when comparing CPU time for b1 with any of the other as
the time probably could be improved by a more professional
implementation of the proposed branch and bound algorithm.
For the numerical studies here, it might be more appropriate to
focus on iteration numbers for which b1 achieves a significant
improvement in most of the cases.

Another issue we want to emphasize here is the rounding
procedure in algorithm b1. The current algorithm rounds each
variable to its nearest integer value, which seldom succeeds in
yielding a feasible solution, as there are so many constraints
on binary variables in the scheduling model. As shown in
Fig. 7, the upper bound seldom changes along the solving
process. We plan to improve the rounding procedure by taking

(c) hourly energy prices

(b) scheduling G1-2 by b1

(a) scheduling G1-2 by c0

Figure 6. Scheduling results comparison.

G1-4

Iteration

Iteration

G1-6

upper bounds

lower bounds

upper bounds

lower bounds

Figure 7. Branch and bound iterations.
into account the relationship among these binary variables in
future work, e.g. their process-time sequence relationship. A
better rounding procedure could potentially further reduces the
iteration number.

VI. CONCLUSION

Industrial loads such as steel manufacturing plants can play
an important role in integrating more renewable generation
into the electric power grid. However, the optimization and
scheduling of these industrial plants are usually computa-
tionally difficult. In this paper, we focus on the steel plant
scheduling problem and propose approaches to improve the
related computational issues. As demonstrated through nu-
merical studies, the proposed methods show potentials in
reducing the computation time and iteration number of the
problem considered. Meanwhile, there still lie possibilities

to further improve the computation efficiency, e.g. to apply
a better rounding method, which serve as future research
directions. The proposed methods are effective in improving
the computations, and may play an important role towards
developing practical scheduling tools for the steel industry and
its demand response.

REFERENCES

[1] N. Li, L. Chen, and M. Dahleh, “Demand response using linear supply
function bidding,” IEEE Transactions on Smart Grid, vol. 6, no. 4, pp.
1827–1838, July 2015.

[2] H. Zhong, L. Xie, and Q. Xia, “Coupon incentive-based demand
response: Theory and case study,” IEEE Transactions on Power Systems,
vol. 28, no. 2, pp. 1266–1276, 2013.

[3] Q. Huang, M. Roozbehani, and M. Dahleh, “Efficiency-risk tradeoffs in
electricity markets with dynamic demand response,” IEEE Transactions
on Smart Grid, vol. 6, no. 1, pp. 279–290, Jan 2015.

[4] E. C. Kara, Z. Kolter, M. Berges, B. Krogh, G. Hug, and T. Yuksel,
“A moving horizon state estimator in the control of thermostatically
controlled loads for demand response,” in IEEE SmartGridComm’13,
2013, pp. 253–258.

[5] Y. Xu and L. Tong, “On the operation and value of storage in consumer
demand response,” in IEEE Annual Conference on Decision and Control
(CDC), Dec 2014, pp. 205–210.

[6] A. Wierman, Z. Liu, I. Liu, and H. Mohsenian-Rad, “Opportunities and
challenges for data center demand response,” in IEEE Green Computing
Conference, 2014.

[7] Z. Liu, I. Liu, S. Low, and A. Wierman, “Pricing data center demand
response,” in ACM International Conference on Measurement and
Modeling of Computer Systems, 2014, pp. 111–123.

[8] W. Shi, N. Li, X. Xie, C.-C. Chu, and R. Gadh, “Optimal residential
demand response in distribution networks,” IEEE Journal on Selected
Areas in Communications, vol. 32, no. 7, pp. 1441–1450, July 2014.

[9] X. Zhang and G. Hug, “Optimal regulation provision by aluminum
smelters,” in IEEE Power and Energy Society General Meeting, 2014.

[10] ——, “Bidding strategy in energy and spinning reserve markets for
aluminum smelters’ demand response,” in IEEE Innovative Smart Grid
Technologies Conference, 2015.

[11] Q. Zhang, C. F. Heuberger, I. E. Grossmann, A. Sundaramoorthy, and
J. M. Pinto, “Air separation with cryogenic energy storage: optimal
scheduling considering electric energy and reserve markets,” AIChE
Journal, 2015.

[12] X. Zhang, G. Hug, Z. Kolter, and I. Harjunkoski, “Industrial demand
response by steel plants with spinning reserve provision,” in 47th North
American Power Symposium, 2015.

[13] T. Samad and S. Kiliccote, “Smart grid technologies and applications
for the industrial sector,” Computers & Chemical Engineering, vol. 47,
pp. 76 – 84, 2012.

[14] D. Fabozzi, N. Thornhill, and B. Pal, “Frequency restoration reserve
control scheme with participation of industrial loads,” in PowerTech,
2013.

[15] S. Elmquist, “Alcoa sees aluminum surplus with
lower demand growth,” April 2015. [Online]. Avail-
able: http://www.bloomberg.com/news/articles/2015-04-08/alcoa-profit-
beats-estimates-as-aluminum-demand-climbs

[16] I. Harjunkoski and I. E. Grossmann, “A decomposition approach for
the scheduling of a steel plant production,” Computers & Chemical
Engineering, vol. 25, no. 1112, pp. 1647 – 1660, 2001.

[17] A. Haı̈t and C. Artigues, “On electrical load tracking scheduling for a
steel plant,” Computers & Chemical Engineering, vol. 35, no. 12, pp.
3044–3047, 2011.

[18] K. Nolde and M. Morari, “Electrical load tracking scheduling of a steel
plant,” Computers & Chemical Engineering, vol. 34, no. 11, pp. 1899
– 1903, 2010.

[19] P. M. Castro, L. Sun, and I. Harjunkoski, “Resource–task network
formulations for industrial demand side management of a steel plant,”
Industrial & Engineering Chemistry Research, vol. 52, no. 36, pp.
13 046–13 058, 2013.

[20] P. M. Castro, I. Harjunkoski, and I. E. Grossmann, “New continuous-
time scheduling formulation for continuous plants under variable elec-
tricity cost,” Industrial & Engineering Chemistry Research, vol. 48,
no. 14, pp. 6701–6714, 2009.

