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Abstract

This paper considers the sparse Gaussian
conditional random field, a discriminative
extension of sparse inverse covariance esti-
mation, where we use convex methods to
learn a high-dimensional conditional distri-
bution of outputs given inputs. The model
has been proposed by multiple researchers
within the past year, yet previous papers
have been substantially limited in their anal-
ysis of the method and in the ability to solve
large-scale problems. In this paper, we make
three contributions: 1) we develop a second-
order active-set method which is several or-
ders of magnitude faster than previously pro-
posed optimization approaches for this prob-
lem, 2) we analyze the model from a theoret-
ical standpoint, improving upon past bounds
with convergence rates that depend logarith-
mically on the data dimension, and 3) we ap-
ply the method to large-scale energy forecast-
ing problems, demonstrating state-of-the-art
performance on two real-world tasks.

1. Introduction

Sparse inverse covariance estimation using ¢; methods
(Banerjee et al., 2008), also known as the graphical
lasso (Friedman et al., 2008), enables convex learn-
ing of high-dimensional undirected graphical models.
These methods estimate the inverse covariance of a
zero-mean Gaussian distribution while penalizing the
£1 norm of the off-diagonal entries; since the entries
in the inverse covariance correspond to edges in a
Gaussian Markov random field, this method learns a
sparsely connected graphical model. In recent years,
many algorithms have been proposed for this problem,
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including projected gradient methods (Duchi et al.,
2008), smoothed optimization (Lu, 2009), alternating
linearization methods (Scheinberg et al., 2010), and
quadratic approximation (Hsieh et al., 2011).

However, in many prediction tasks we may not want to
model correlations between input variables. This is the
familiar generative/discriminative contrast in machine
learning (Ng & Jordan, 2002), where it has been re-
peatedly observed that in terms of predictive accuracy,
discriminative approaches can be superior (Sutton &
McCallum, 2012). This has lead several researchers
within the past year to (independently) propose a gen-
eralization of the Gaussian MRF, which we refer to as
the sparse Gaussian conditional random field (CRF),
that allows for discriminative modeling between input
and output variables (Sohn & Kim, 2012), (Yuan &
Zhang, 2012), and our own work in (Wytock & Kolter,
2012).1  Although previous papers all showed signifi-
cant promise to the model, they employed off-the-shelf
optimization methods (significantly limiting the size of
potential applications) and/or had theoretical results
that did not fully highlight the advantages of sparsity.

In this paper, we make three contributions. First, we
develop a specialized second-order active set method
for estimating sparse Gaussian CRF parameters,
which we show to be several orders of magnitude faster
than previously proposed algorithms. Second, we de-
velop convergence bounds for the algorithm that estab-
lish conditions for exact recovery of underlying mod-
els, with rates that specifically highlight the graph de-
gree, improving upon the results in (Yuan & Zhang,
2012) in many settings. Third, we present extensive
experimental results on large-scale synthetic data and

While these formulations were developed indepen-
dently, they are mathematically identical, and so the model
should be credited to (Sohn & Kim, 2012) as the first
source, which termed the model “Sparse Conditional Gaus-
sian Graphical Model”. However, in this paper we refer to
the model as the sparse Gaussian CRF, as the discrimina-
tive setting coincides with the standard notion of a condi-
tional random field.
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Figure 1. Illustration of sparse Gaussian CRF model.

two real-world energy forecasting tasks. Here we show
improvement over state-of-the-art methods for wind
power and electrical demand forecasting; these prob-
lems are of substantial practical interest, as even small
advances in forecasting accuracy can have notable im-
pact on the efficiency and costs of large power systems.

2. The sparse Gaussian CRF model

Let x € R™ and y € RP denote input and output vari-
ables for a prediction task. A Gaussian CRF is a log-
linear model with

p(ylz; A, ©) = % exp{—y"Ay—2z"0Oy} (1)
(x)

where the quadratic term models the conditional de-
pendencies of y and the linear term models the de-
pendence of y on z. The model is parameterized by
A € RP*P_which corresponds to the inverse covariance
matrix, and © € R"*P which maps the inputs to the
outputs; an illustration of the model is shown in Fig-
ure 1. Since the CRF is a Gaussian distribution with
mean —A~'OTz, the partition function is given by

1
Z(x)

=c|A|exp {—z"OA"'OT2}. (2)

For m data samples, arranged as the rows of X €
R™*™ and Y € R™*P| the negative log-likelihood
f(A,©) = —logp(Y|X; A; ©) is given by

f(A,0) = —log |A|+tr (Sy,A+25,,0+A7'07S,,0)

(3)
(omitting the constant term c¢ term), where the S
terms are empirical covariances

Syy = iYTY, Syz = lYTX, Sy = ~XTX. (4)
m m m

Without regularization, it is straightforward to verify
that this optimization problem is simply a reparam-
eterization of the least squares problem. We can ad-
ditionally add ¢y regularization by adding A2 to the
diagonal elements of S (formally, this corresponds to
a Normal-Wishart prior on A and the columns of ©),
but again this just corresponds to the regularized least-

squares solution. However, the total number of param-
eters in this problem (for estimating both © and A) is

np + p(p+ 1)/2, and thus model can overfit when the
number of examples m is relatively small.

To address this concern, we regularize the maximum
likelihood estimate by adding ¢; regularization to ©
and the off-diagonal elements of A; since the #; norm
encourages sparsity of the parameters, this directly
corresponds to learning a sparse set of edges in our
graphical model. Our final optimization problem is
then given by minimizing the composite objective

minimize f(A,©) + A(|Al1 + |0]1)  (5)

where |- ||1 denotes the elementwise ¢; norm, ||-{|1 . de-
notes the elementwise 1 norm on off-diagonal entries,
and A € R, is the regularization parameter.? This is
a convex objective, following from the convexity of the
¢1 norm and the fact that the log-partition function
of an exponential family graphical model is concave.
Furthermore, the gradients of f are given by

VAf(A,©) =8, —A~' — A0S, 00"

6
Vo f(A,0) =28, +2S,,0A7", ©
which in previous work has motivated the use of first-
order non-smooth optimization methods.

3. Optimization

Previous work on the sparse Gaussian CRF (SGCRF)
model has proposed using off-the-shelf algorithms to
solve the above optimization problem, including or-
thantwise quasi-Newton methods (Sohn & Kim, 2012)
(specifically, the OWL-QN method of (Andrew & Gao,
2007)), and accelerated proximal gradient methods
(Yuan & Zhang, 2012) (specifically, the FISTA algo-
rithm of (Beck & Teboulle, 2009)). These methods are
attractive due to their simplicity, and since the gradi-
ents can be efficiently computed using (6). Unfortu-
nately, the algorithms still suffer from relatively slow
convergence (even though they are faster than many
alternative non-smooth first-order methods), and thus
quickly become computationally impractical for large
output and input dimensions.

In this section, we propose a new second-order active
set method for solving the sparse Gaussian CRF. Such
algorithms have previously been applied to the Gaus-
sian MRF (Hsieh et al., 2011; Olsen et al., 2012), and
a general analysis of such methods (showing quadratic

convergence) is presented in (Tseng & Yun, 2009). The

2Tt is also possible to introduce different regularization
parameters for A and ©, though we have found through
our experiments that the optimal settings for these regu-
larization parameters are typically quite similar, so we use
only one for simplicity.
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method here largely mirrors in the approach in (Hsieh
et al., 2011) for the Gaussian MRF, but the precise
formulation is significantly more involved, owing to
the complexity of gradient term of the A~'07S,,0
term in the likelihood. Despite being a second-order
method, we show that the resulting algorithm is faster
(to reach any accuracy) than previously proposed ap-
proaches, and several orders of magnitude faster at
achieving solutions to high accuracy.

3.1. A second-order active set approach

The basic idea of our method is to iteratively form a
second-order approximation to the objective function
(without the ¢4 regularization term), and then solve an
{1 regularized quadratic program to find a regularized
analog of the Newton step. In general notation, to
minimize some objective f(x) + A||z|1, we form the
Taylor expansion

[le+2) % g(A) = @)+ Vo () At S ATV () A

(7)
where V, f(z) and V2f(x) denote the gradient and
Hessian respectively. To compute the regularized New-
ton step d, we solve

d = argming(A) + Allz + Al (8)
and update the parameters x < = + ad for some step-
size a, determined by backtracking line search.

In our setting, precise formulations of the gradient and
Hessian terms are cumbersome, due to the fact that all
parameters involved are matrices, but we can concisely
express this second order Taylor expansion using dif-
ferentials. In particular, (see Appendix A for a full
derivation) the second order Taylor expansion is

f(A+ A, 0+ Ap) = g(An, Ae) = f(A,0) +
tI‘SyyAA + QtI‘S?ﬂA@ - tI‘A_lAA +
2rA™107 S, Ao — trATrOT S, OA T AN+
trATTAAATIOT S, OA T AL + %trA‘lAAA_lAA +

trA ' AL S Ao — 2ttA T ANATIOT S, Ae.
(9)

As above, we compute the Newton steps Dy, Dg by
Dp,Dg =arg min g(Ap,Ag) +
Ap, Ao
1+ 10+ Asl1)

(10)
A(A+ A

where we use a coordinate descent algorithm to opti-
mize this ¢ regularized QP. Since ¢; regularization on
the Newton direction tends to push the Newton up-
dates in a direction that increases sparsity and since

Algorithm 1 Newton Coordinate Descent for SGCRF

Input: Input features X € R™*" and outputs Y €
R"™*P; regularization parameter A
Output: Optimized parameters A, ©
Initialize: A« I, © <0
while (not converged) do
1. Determine active sets Sy, So using (11).
2. Find Newton update Dy, Dg by solving the
following optimization using coordinate descent

OQ(AA7A6) +
AJA+ Apllis + 110+ As]1) -

Dy, Dg < ar min
e gAA7 0,Az=

3. Compute a step size « using backtracking line
search, and update

A+ A+aDy, ©«+ 0 +aDe.

end while

the line search provably converges to step sizes with
a = 1 (Tseng & Yun, 2009), the number of nonzero
elements tends to increase as the optimization pro-
gresses. For the line search, we additionally need to
ensure that A is positive definite, which we ensure by
a common technique of simply defining — log | X| to be
infinite if X % 0. A generic pseudo-code description of
the algorithm is shown in Algorithm 3.1, and a more
detailed presentation is given in Appendix B. Further-
more, a C++ and MATLAB implementation is avail-
able at http://www.cs.cmu.edu/~mwytock/gcrf/.

3.2. Computational speedups

In order to make the Newton method efficient numer-
ically, there are a number of needed optimizations.
Again, these mirror similar optimization presented in
(Hsieh et al., 2011), but require adaptations for the
CRF case. In practice, the majority of the compu-
tational work of the Newton CD method comes from
computing the regularized Newton step via coordinate
descent; even though coordinate descent is known to
be an efficient method for solving ¢; regularized prob-
lems, in our setting we have a total of p(p+1)/2 +np
different variables, and it would be infeasible to op-
timize over them all. Thus, at each iteration of the
algorithm we use an active set method, and only op-
timize over a variable (Ay);; or respectively (Ag);; if

[(Vaf(A, e))i,jl >Xor Ajj #0

(Vo f(AO)is] > Aor 0y £0, OV

i.e., if the optimally conditions for that parameter are
violated for the current iterate of the parameters. Be-
cause the sparsity resulting from the /; constraint re-
sults in a relatively small active set, this provides a
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substantial speedup, especially when the optimal so-
lution has high sparsity. We also keep the active set
small by using warm starts; solving the optimization
problem for a decreasing a sequence of the regulariza-
tion parameter and initializing each successive prob-
lem with the previous optimal solution.

Second, in the coordinate descent loop, it is impor-
tant to cache and incrementally update certain matrix
products, such that we can evaluate subsequent coor-
dinate updates efficiently. This requires that we main-
tain an explicit form of the matrix products AyA~!
and AgA~!; crucially, when we update a single coor-
dinate of the Ag or Ap, we only need to update a
single row of these matrix products, and we can sub-
sequently use only certain elements of these products
to compute each coordinate descent step. Details are
given in Appendix B.

Third, since each step of our Newton method involves
solving an {1 regularized problem itself, it is impor-
tant that we solve this regularized Newton step only
to an accuracy that is warranted by the overall accu-
racy of algorithm as a whole. Although more involved
approaches are possible, we simply require that the
inner loop makes no more than O(t) passes over the
data, where t is the iteration number, a heuristic that
is simple to implement and works well in practice.

Last, in cases where n > m (which is a setting that
we are crucially interested in for motivating ¢; reg-
ularization), by not forming the S,, € R™ ™ matrix
explicitly, we can reduce the computation for products
involving X7 X from O(n?) to O(mn). Note that the
same considerations do not apply to Sy, since we need
to form an invert the pxp matrix A to compute the gra-
dients. Thus, the algorithm still has complexity O(p?),
as in the MRF case. However, this highlights another
advantage of the CRF over the MRF: when n is large,
just forming a generative model over x and y jointly
is prohibitively expensive. Thus, the sparse Gaussian
CRF significantly improves both the performance and
the computational complexity of the generative model.

4. Theoretical results

As for /1 regularized linear regression and the sparse
Gaussian MRF, it is of significant interest to know
when, if data is generated from a sparse underly-
ing model, the sparse Gaussian CRF is able to re-
cover this model with high probability. In this sec-
tion, we develop theoretical results that show the
sample complexity of the SGCRF grows slower than
Q(d*(logp +1logn)) where d is the maximum degree of
the output variables in the underlying graph; impor-
tantly, this term grows logarithmically in the input and

output dimensions p and n; relative to the best known
bounds for the special cases of the Gaussian MRF and
linear regression, our bound has a worse dependence
on d, which arises in bounding the error of the Taylor
expansion. This element can likely be improved with
more refined analysis, but we focus here on obtaining
a bound that is logarithmic in p and n, and otherwise
does not depend on on the total number of nonzeros
in the true parameters.

The proof proceeds in the primal-dual witness (PDW)
framework of Wainwright (2009) (that is, we are con-
cerned with the setting of recovering the sparsity of
the true underlying model) and our analysis mirrors
much of the Gaussian MRF case (Ravikumar et al.,
2011); however, as with the optimization, the addi-
tional terms in the gradient of the CRF introduce sub-
stantial added complexity, which for instance result in
the worse dependence on d. We operate under the
following assumptions, similar to assumptions for the
Gaussian MRF and least-squares settings.

1. True underlying model. The data is generated
according to the model

ylo ~ N(=A'o Tz, Ax 7 (12)

where each row of [A* ©*T] has at most d nonzero
entries (i.e., the vertices corresponding to output
variables in the graphical model of the CRF have
maximum degree d). It is straightforward to gen-
eralize this to the case of sub-Gaussian noise, but
we assume the Gaussian model for simplicity.

2. Column normalization. The columns of the
input feature matrix have bounded ¢5 norm such
that max;j—1,n || Xj|l2/v/m < cx. This same as-
sumption is used in the corresponding analysis of
the ¢, regularized least-squares case. Importantly,
in the CRF case we make no assumptions about
the distribution of z.

3. Restricted convexity. Letting S; denote the
nonzero indices of the ith column of ©* (i.e., the
edges between inputs and the ith output), we have

L or
)\Inin 7XS,- XS,- >0 (13)

m (2
i.e., this term is strictly convex when restricted
to the true active set. This is again a common
assumption for 1 methods, but note that we do

not require a restricted convexity assumption on
A* as the logdet term is already strictly convex.

4. Mutual incoherence. This is the most subtle
of the assumptions, and one which can often be
violated in practice, yet it is required for the PDW
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approach. Denoting the Hessian of the objective
as H = V?\yef(A, ©) and S the set of all nonzero
entries of A* and ©*, we require that

IHss(Hss) o <1 - a (14)

for some a > 0 where where ||-[|,, denotes the
matrix infinity norm, the maximum absolute row
sum. This condition stipulates that the edges in
the true active set are not too correlated with
edges outside, and mirrors the same assump-
tion for the least-squares and Gaussian MRF ap-
proaches (though of course with differences owing
to the precise form of the Hessian). We give an
illustrative example of this condition for simple
graphs in Appendix D.

Theorem 1. Under the above assumptions, given a
sample size and regularization parameter

m > crd*(1 + 8/a)? log(pn)

\ oo [og(n) +log 4 (15)
= €2
m

then with probability at least 1 — c3 exp(—camA?)

1. The solution to the {1 regularized optimization
problem, A, ©, have nonzero entries that are a
strict subset of the nonzero entries of A*, ©*.

2. The solution satisfies the elementwise bounds

max{[|A — Ao, |© — O]} <

log(pn) + log 4 (16)

cs(1+8a™h) -

where c1,...,c5 denote constant terms.

The proof of this theorem is quite lengthy and deferred
to Appendix C (where we also provide an explicit defi-
nition of the constants and a lengthier definition of the
assumptions). Intuitively, this theorem shows that a
sample size of m = Q(d*(logp + logn)) is sufficient
to guarantee with high probability that solving the ¢
regularized MLE recovers a subset of the true edge
structure, and that the recovered parameters are close
to the true parameters. Note that in many settings
this is an improvement over the bound in (Yuan &
Zhang, 2012), which effectively requires a sample size
Q(s(logp+logn)) where s is the total number of edges
in the graph; for graphs with a fixed low degree (such
as a chain grain) s can grow linearly in p or n, whereas
d remains constant, and so this represent a significant
improvement—indeed, as we show in our experimental
results, the empirical scaling does indeed depend only
logarithmically on p, even if s increases linearly in p.3

3The bounds are not directly comparable, since Yuan

5. Experimental results

Here we experimentally evaluate several aspects of the
proposed model and algorithm on synthetic data and
two real-world energy forecasting problems, the tasks
of predicting upcoming wind power from multiple wind
farms and the task of predicting upcoming electrical
demand over multiple utility zones. For the latter two
cases, we demonstrate state-of-the-art results. The
wind prediction task is from the 2012 Global Energy
Forecasting Competition (Hong, 2012), a contest re-
cently held on Kaggle to forecast wind power; here
our algorithm improves upon our own submission to
this contest by 5.5% (our entry was a top-5 entry
that used least-squares with the same features and was
2.5% worse than the winning entry). For load forecast-
ing, we use real-world load data from the PJM system
operator (available at http://www.pjm.com/) and im-
prove upon the deployed PJM forecasts by 19%. We
also highlight the performance of the algorithm rel-
ative to its theoretical bounds, and the optimization
performance of our Newton method (which in all cases
substantially improves upon previous methods).

5.1. Synthetic data

Exact subset recovery. Our first experiments illus-
trate when the model is able to exactly recover the
underlying graph structure of a true model, and illus-
trates that the overall dependence given in our theory
looks to fit the observed results. Specifically, we gener-
ate data from a chain CRF, where each output variable
is connected to two others, and each input variable is
connected to one output. To represent the chain we
use the true parameter A* with A7, = 1 on the diag-
onal, Afj = 0.2 on the super diagonal and a diagonal
O* with 9} = 0.2.

In Figure 2 (top), we vary m for different choices of p
and observe that once m passes a certain threshold we
recover the support of the true parameters with high
probability—scaling the x-axis by logp demonstrates
the same theoretical dependence on p as shown in our
theory. Importantly, note that in this case, the to-
tal number of edges in the graph, s, increases linearly
in p whereas the maximum vertex degree is fixed at
d = 3. Thus, our bound captures the overall scaling
of the model, whereas the bound of (Yuan & Zhang,
2012) would be significantly looser in this case. For the
Figure 2 (bottom), we increase n by adding irrelevant
features (features that are not connected to the output

& Zhang (2012) bounds only the Frobenius norm, and re-
quires a looser restricted isometry property. Nonetheless,
we see no direct way of providing a dependence on graph
degree using the analysis methods in this past work, so this
represents a notable improvement.
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Figure 2. (top) Fraction of 20 trials in which support of
the estimated parameters match that of the true param-
eters, increasing n, p; (bottom) adding irrelevant features,
increasing n.

variables); again, we observe a logarithmic dependence
on the input dimension.

Optimization performance. Because the chain
CRF is a rather limited example, for the remaining
synthetic examples we generate data from more com-
plex model. In particular, follow a similar procedure
as in (Yuan & Zhang, 2012), and generate A and ©
with 5(n + p) random unity entries (the rest being
zero), and set the diagonal of A such that the condi-
tion number of A equals n + p. We sample x from a
zero-mean Gaussian with full covariance, square half
the entries, and then normalize the columns to have
unit variance. We use this same process for the next
three experiments, but vary problem size to make the
experiments computationally feasible in all cases.

Figure 3 shows the suboptimality of each method in
terms of the objective function f— f* (where f* is com-
puted by running our Newton CD approach to numeri-
cal precision) versus execution time on a 2.4GHz Xeon
processor; this problem has size p = 1000, n = 4000,
and m = 2500. On this problem the Newton CD ap-
proach converges to high numerical precision within
about 81 seconds, while FISTA and OWL-QN still
don’t approach this level of precision after two hours.
It is also important to note that the Newton CD ap-
proach also reaches all intermediate levels of accuracy
faster than the alternative approaches, so that the al-

10*
- B —~A— Newton CD
10 —&— OWL-QN
\ —O6— FISTA

|
0 1000 2000 3000 4000 5000 6000
Time (seconds)

Figure 3. Suboptimality of solution versus time for New-
ton CD versus previously considered algorithms for sparse
Gaussian CRF, OWL-QN and FISTA.
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Figure 4. Generalization performance (measured by mean
squared error of the predictions) for the Gaussian MRF
versus CRF, with problem size n = 200, p = 50, m = 50.

gorithm is preferable even if only intermediate preci-
sion is desired. Indeed, we note previous works (Sohn
& Kim, 2012; Yuan & Zhang, 2012) considered max-
imum problem sizes of np ~ 10° due to the time re-
quired for training; since much of the appeal of ¢; ap-
proaches lies precisely in the ability to use large feature
sizes, this has significantly limited the applicability of
the approach. We thus believe that our proposed al-
gorithms opens the possibility of substantial new ap-
plications of this sparse Gaussian CRF model.

Comparison to MRF. Our next experiment com-
pares the discriminative CRF modeling to a generative
MRF model. In particular, an alternative approach to
our framework is to use a sparse Gaussian MRF to
jointly model z,y as a Gaussian, then compute y|x.
Figure 4 shows the performance of the Gaussian MRF
versus CRF, measured by mean squared error in the
predictions on a test set, over a variety of different
A parameters. The CRF substantially outperforms
the MRF in this case, due to two main factors: 1)
the x variables as generated by the above process are
not Gaussian, and thus any Gaussian distribution will
model them poorly; and 2) the = variables are cor-
related and have dense inverse covariance, making it
difficult for the MRF to find a sparse solution.
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chosen via cross-validation), for the sparse Gaussian CRF
versus /o regularized least squares. Here n = 800, p = 200.

Finally, we note again that in addition to the per-
formance benefits, the CRF has substantial compu-
tational benefits. Modeling = and y jointly requires
computing and inverting their joint covariance, which
takes time O((n + p)3); in contrast, the corresponds
operations for the CRF case are O(np?), which is sub-
stantially faster for even modestly large n. Indeed, for
the two real-world experiments below, we were unable
to successfully optimize a joint MRF using the QUIC
algorithm of (Hsieh et al., 2011) (itself amongst the
fastest for solving the sparse Gaussian MRF), after
running the algorithm for 20 hours.

Sample size. Finally, to illustrate the benefit of ¢4
regularization over traditional (¢5 regularized) multi-
ple least-squares estimation, we evaluate generaliza-
tion performance versus sample size, shown in Fig-
ure 5. This figure shows performance measured by
mean squared error of the ¢; regularized sparse Gaus-
sian CRF versus traditional least-squares with /5 reg-
ularization; here, for each m we choose the ¢; and /5
regularization parameters using a cross validation set,
then evaluate the MSE on a test set. As the sample
size increases, the performance of the two methods be-
comes similar (in the limit of infinite data with fixed
n and p, they will of course be equivalent); however,
as expected, for small samples sizes the ¢; regulariza-
tion method performs much better, being able to take
advantage of the sparsity in the underlying model.

5.2. Application to energy forecasting

Wind power forecasting. We here apply the sparse
Gaussian CRF model to the wind power forecasting
task from the Global Energy Forecasting 2012 com-
petition (Hong, 2012), a recent Kaggle competition
for predicting upcoming wind power at seven differ-
ent nearby wind farms for a time horizon of 48 hours.
The input data for this problem consisted of previous
power outputs for the wind farms (going as far back
as the past 36 hours), and wind speed forecasts for

Figure 7. Sparsity patterns of estimated A and © param-
eters for the wind forecasting task. White denotes zero
values, and a wind farms are grouped together in blocks.

the upcoming 48 hours. From this input we gener-
ated features that consisted of: 1) the past 8 hours
of power for each wind farm, and 2) 10 RBF features
placed around each forecasted wind speed, to capture
non-linear dependencies on the wind speed itself. In
total, this lead to p = 336 dimensional outputs and
n = 3417 dimensional inputs. We heavily optimized
these features for the competition, and using these fea-
tures with ordinary least-squares resulted in a top-5
finish in the competition (out of 134 entrants).

Figure 6 shows the performance of the sparse Gaussian
CREF on the wind forecasting task, analyzed across sev-
eral dimensions. First, the figure on the left shows per-
formance of method for varying A; also shown in the
best performance of {5 regularized least-squares. For
properly chosen A, the algorithm outperforms least-
squares (using the exact same features), by 5.5%. For
a domain such as wind power forecasting, where there
is a limit to the possible performance (wind is an in-
herently stochastic phenomenon, so exact forecasts are
not possible), and since the least-squares solution in
this case is already using highly optimized features,
this represents a substantial improvement. The differ-
ence in performance become even more pronounced for
smaller sample sizes, as shown in the Figure 6 (center),
which shows MSE (using A chosen by hold out cross
validation), for a variety of sample sizes. Finally, to
highlight the optimization performance on real data
as well, we shown in Figure 6 (right) the optimization
objective versus training time for the different opti-
mization algorithm. Again, the Newton CD algorithm
vastly outperforms FISTA and OWL-QN, converging
to high accuracy after 160 minutes, whereas the latter
do not reach reasonable accuracy after several hours.

Finally, a significant advantage of the sparse Gaus-
sian CRF approach is that the sparsity pattern of the
resulting model can be interpreted directly as condi-
tional dependencies between variables, and thus the
sparsity pattern itself can be very informative. Figure
7 shows the sparsity patterns in A and © for the wind
forecasting task; they illustrate a clear temporal and
spatial dependence between the different wind farms.

Electrical demand forecasting. We further apply
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Figure 6. Performance of SGCRF on wind power forecasting showing (left) generalization performance for varying values
of A with vertical line denoting value chosen by cross-validation, (center) performance versus least-squares on different
sample sizes, and (right) optimization performance of the Newton CD approach versus alternatives.

0.12
SGCRF
01 — — — PJM forecast
® 0.08
0.06
0.04 ; > s
10 10° 10
A

Figure 8. Generalization performance for forecasting fu-
ture demand for 24 hours, compared under MSE to PJM’s
own forecasts with vertical line denoting A chosen by cross-
validation.

the model to the task of predicting future electrical
demand for zones operated by PJM (a system operator
for coordinating electricity generation and delivery for
several Eastern U.S. states). In particular, the goal is
to forecast upcoming electrical demand for the next 24
hours over 15 different zones in the system.

Electricity forecasting is a well-studied problem (Soli-
man & Al-Kandari, 2010), and PJM already employs a
sophisticated forecasting system in its operation (Vari-
ous, 2012) to predict a subset of the zones; rather than
try to build an entirely new forecast, we use these pre-
vious point forecasts as input features (along with past
energy consumption and time-of-day features) to pre-
dict future demand. The goal is thus to use a combi-
nation of the existing predictions to predict even more
accurately, and if we can improve upon the PJM fore-
casts, this means that we are effectively combining ex-
isting information to ultimately deliver a better pre-
diction. For this problem, the dimension of input and
output are p = 350 and n = 860. We present these
results here more briefly, but the key performance el-
ement we want to highlight is in Figure 8; the figure

shows that by jointly predicting over all the zones, we
are able to improve substantially upon PJM’s already
state-of-the-art point forecasts.

6. Conclusion and discussion

The sparse Gaussian conditional random field enjoys
many benefits of existing methods for learning high-
dimensional Gaussian graphical models; we believe
that the advances put forward in this paper make the
model significantly more practical for large-scale prob-
lems, and also significantly advance our theoretical un-
derstanding of the method. Furthermore, the empiri-
cal results presented here on wind power and demand
forecasting are of substantial practical interest, and
the improvements presented here have the potential
for notable effects on power system efficiency.

Two future directions seem particularly promising.
First, it would be worthwhile to use regret-based ap-
proaches to develop alternate convergence rates under
weaker assumptions than those we use. Although ex-
act feature selection is not possible even for the least-
squares case when inputs are very highly correlated, it
is nonetheless possible to obtain regret bounds that
bound the loss versus that of the true model, e.g.
(Bartlett et al., 2012); such directions are likely to be of
substantial interest here, since we do expect to often be
in situations where input features are correlated. Sec-
ond, from an application standpoint in energy systems
in particular, there are a huge number of forecasting
problems that share similar properties as wind power
and demand; of crucial importance, however, is devel-
oping control algorithms that can exploit these prob-
abilistic forecasts in the planning stage. Developing
such algorithms will allow high-dimensional graphical
models such as the Gaussian CRF to have an immedi-
ate impact on these globally important domains.
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Appendices to “Sparse Gaussian Conditional Random Fields:
Algorithms, Theory, and Application to Energy Forecasting”

A. Derivation of Gradient, Hessian, and Differentials

Here we derive analytic expressions for the gradient, Hessian, and various differentials of the log likelihood
function. Recall that the log-likelihood is given by

F(A,©) = —log |A| + trAS,, + 2trOTS,, + trA~107'S,,0 (1)

We adopt the differential matrix calculus notation from (Magnus & Neudecker, 1988) where for a matrix A €
R™*" and a function f : R™*™ — R, d*f(A;U) : R™*" x R™*™ — R denotes the k-th differential of the function
f evaluated at U. For example, the first differential can easily be expressed in terms of the gradient

df (A;U) = rVa f(A)TU. (2)

Other derivatives for functions of matrices (i.e., Hessians or higher order terms) are cumbersome to represent
directly, but the differentials themselves can typically be expressed compactly; indeed, it is often simplest to
first derive these differentials and then use them to determine analytical expressions for the Hessians and higher
order derivatives. Furthermore, the Taylor expansion of a function can be represented directly in terms of its
differentials; for instance the second order approximation is given by

1 1
FA+A) = f(A) +df (A A) + Sd* F(A; A) = F(A) + vee(Vaf(A))" vee(A) + 5 vee(A)T (VA f(A)) vee(A) (3)
where vec denotes the vectorization of a matrix (forming a vector by concatenating the columns), and V? f(A)

denotes the Hessian.

Using standard rules of differential calculus, we can compute the first and second order differentials of the
log-likelihood f(A, ®),

df(A,©;U, V) = trS,,U + 2trS,,V — trA~'U + 2trA~'07'S,,V — trA*07 S, 0A'U (4)
and from this expression we can easily determine the relevant gradients

Vaf(A,©) =S, — At —ATteTs,  0A7!

5
Vof(A,0) =2S,, +25,,0A". (5)

Similarly, we can differentiate again to find the second differential
d?f(A,O;U, V) =2trA ' UAOT S, OA U + trA ' UATU + 2trA™' VTS,V — dtrA ' UA'OT S, V. (6)

Combining the first and second differential gives the full second order Taylor expansion shown in the paper. It
also lets us determine the Hessian itself, which we use in the incoherence condition for the theoretical results

Ao (A1 +207107S,,0A71) —2A- e AtOTS,,

Vief(A©)= 207! ® Sy, OA! 2071 ® Syp ™

B. Detailed Description of Newton Coordinate Descent Method

We present a detailed description and full pseudo-code for the Newton coordinate descent algorithm. The
derivation mirrors that in (Hsieh et al., 2011). The complete method is shown in Algorithm 1, with the coordinate
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Algorithm 1 Newton Coordinate Descent for SGCRF
Input: Input features X € R™*™ and outputs Y € R™*P; regularization parameter A; algorithm parameters
€, 0, a, (.
Output: Optimized parameters A, ©
Initialize: A < I, © < 0, ¥ + A~}
while (not converged) do
1. Compute the gradient, determine active sets Sy, So using (14), and check for convergence.
2. Find regularized Newton direction Dy, Dg using Algorithm 2.
3. Initialize o <~ 1 and compute

4 (trVAf(A, ©)TAN +t1Ve f(A,0)TAg + [|[A + Apll1x + [0 + Ash).

while (insufficient descent) do
1. Compute the Cholesky decomposition LLT = A + aD,, continuing if not positive definite
2. Check descent f(A + aDy,0 + aDg) < f(A,©) + aop and break if satisfied
3. o+ Pa
end while
end while

descent inner loop for computing the approximation to the Newton direction given in Algorithm 2. This process
repeats until the solution converges to a within a specified tolerance, checked using the KKT conditions.

Next, we derive the coordinatewise updates for the inner loop and highlight the key optimizations that are used
in order to achieve fast performance.

B.1. Coordinate descent updates for the Newton approximation

To begin, note that for a fixed A and ©, the regularized Newton direction is given by the solution to the
second-order Taylor expansion which for our problem has the form

h(Ap, Ao) = trSy,Ap + 2trSy,Ae — ttA ' Ap + 2trA~ 10T S, Ag—
trA 10T S, OAT AL + trATTAAATIOT S, OATIA — %trA’lAAAflAm- (8)
A(|JA+ Arlli- + |© + Asllh)

We split the updates into three cases. First, we consider optimizing over a diagonal element of D, by finding
p = argmin, h(Ax + pe;el’, Ag) which has the explicit form

miniﬂmize %;ﬁ [S3 425505 + 1 [0 + (Syy)ii — Vis + (BUD)y; — 2(2075,,VE); + 2(YUD);] + )
AlAs; + pl
where ¥ =A=' and ¥ = ¥07S,,0%.
Next, note that for two symmetric matrices A, B, not necessarily equal, the symmetric update is given by
arg muin trA(U + u(eiejr +ejel ))B(U + ;L(eie;‘-r +ejel )
= arg mﬂin ,thrA(eieJT + ejeiT)B(e,-ejT +ejel ) + utrAUB(eiejr +ejel ) + ,utrA(eiejT +ejel \BU (10)

= aI‘ngluin /.LZ(AiiBjj + 2A1]Bl] + AjjBii) + 2/1((AUB)U + (AUB)_”)

Applying this equivalence twice, once with A = B = ¥ and again with A =X, B = ¥ the the symmetric update
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Algorithm 2 Coordinate descent inner loop

Input: S empirical covariance, A regularization parameter, Sy, Sg active sets and A, © current estimates
Output: Approximate regularized Newton direction Dy, Dg
Initialize: Dy <+ 0, Dg < 0,U <~ 0,V « 0
while (not converged) do
for coordinate (i,7) in Sy do
1. Find g by solving (9) or (11), using U and V for efficiency.
2. Symmetrically update Dp and two rows of U

(DA)ijy (Da)ij < (Da)ij +
Uj < Uj + pd;

where ¥, denotes the ith row of A~1.

end for

for coordinate (i,7) in Sg do
1. Find p by solving (12), using U and V for efficiency.
2. Update Dg and one row of V'

(De)ij < (De)ij + p
Vi < Vi + p¥;

end for
end while

for an off-diagonal element of matrix Dy, p = argmin, h(Ax + ,u(eieJT +ejel’), Ag) is given by
minimize /,L2 [ij + E”Ejj + Zii‘l’jj + 221']"1/1‘]‘ + Z]J\I’“] +
nw

20 [=%i5 + (Syy)ij — Wij + (BUX)ij — Pij — Bji + (PUD)i; + (YUD) 5] + (11)
2M|Aij + Ui + il

where ® = X075, VY. Finally, we consider optimizing over an element of Dg

miniumize M2 [Z”(Sxm)“} + u [Q(Swy)” + Q(Sa:w@EJ)U + Q(SQNJVE)” — Q(SI;E(“DEUZ)U] + ( )
12
A©ij + Vij + il

Each equation has a quadratic form and thus can be solved in closed form. The second two have an ¢; penalty
and the form min,, %a,u2 + b + A|e 4+ p| which has the solution

b
p=—c+S\a (C - a) (13)

B.2. Optimizations

As in the case of the MRF (Hsieh et al., 2011), there are several modifications to a naive solution that significantly
reduce the running time of the algorithm.

First, consider the matrix products involved in the coordinatewise updates above. A naive implementation of the
coordinate descent algorithm would require O((n + p)?) operations even though the majority of the elements are
unchanged from one iteration. However, by caching products of the static matrices and maintaining a factorized
form of the products involving A and Ag, specifically U = Ap3, V = AgX, we reduce this to O((n+p)). As a
consequence, at each iteration of the loop we must update the rows of U and V corresponding to the coordinates
of AA and A@.
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Next, we describe how we drastically reduce the coordinate descent active set. At each iteration of the outer loop,
we fix the active set using the current nonzero coordinates and the KKT conditions of the objective function.
We include a coordinate of A, respectively O, if

I(Vaf(A,©))i ] > Aor Aj; #0

(Vo f(A,0)): ] > Aor ©; #0. (14)

Since the size of this active set is determined by the number of nonzero elements in the parameters, for sparse
solutions the speed up is very significant. Note that although we fix the active set before beginning coordinate
descent, as in the MRF case (Hsieh et al., 2011), we still have convergence guarantees for the overall algorithm.

Finally, note that when taking a step we must ensure sufficient descent and that the A parameter remains in
the semidefinite cone. We accomplish this using the Cholesky decomposition, which is also used for efficiently
computing A™!.

C. Theoretical Analysis

We will make the following assumptions about the input and output variables X and Y. These mirror similar
assumptions in (Wainwright, 2009) and (Ravikumar et al., 2011), and we will discuss the precise differences.

First, the analysis here proceeds on the assumption that there is a true underlying model generating the test
data, of the prescribed form (i.e., the data is generated according to a sparse Gaussian CRF). It is trivial to
extend this analysis to the case of sub-Gaussian noise, but we simply assume Gaussian noise for simplicity of
presentation

Assumption 1. Underlying model The data is generated according to
ylo ~ N(=A*re Tz, A5 7h). (15)

where each row of [A* @*T] has at most d nonzero entries (i.e., the vertices corresponding to output variables in
the graphical model of the CRF have maximum degree d).

For simplicity, we will also denote * = A* 1.

Our second assumption is a restricted convexity requirement, which ensures that the optimization problem
restricted to the active set is unique. This is a common assumption for ¢; approaches (the same condition
appears in the least-squares analysis of (Wainwright, 2009)), and the only extension here is that we require this
to hold for each output variable.

Assumption 2. Restricted convexity For each output i, let S; denote {j : ©;; # 0} (i.e., S; is the “active
set” of edges directly connecting an input to y; ), we have that

1
>\min *XTX > 0 16
(5 x5xs.) (16)

The next assumption is more subtle (and quite strict in practice), but is again typical for exact subset selection
proofs for ¢; approaches. Namely, we require a mutual incoherence assumption, which effectively ensures that
the connections in the CRF that correspond to the “true” edges do not correlate too much with edges that are
not the support set.

Assumption 3. Mutual incoherence Let S denote the active set of all variables in vector form

vec(supp{A*})
vec(supp{©*})

where supp denotes the support function (the indicator of whether an element is nonzero), and let S denote its

complement. Then for H = Vief(A, 0) defined above

(17)

1Hss(Hss) oo <1 - (18)

for some o > 1, where ||-||,, denotes the matriz infinity norm, the mazimum absolute row sum.



Appendices to “Sparse Gaussian conditional random fields”

Our first lemma shows that the gradients V f(A*,0*) and Vg f(A*, ©*) (the gradients evaluated at the true
parameters) are small (in infinity norm) with high probability given samples on the order of m = Q(logn+log p).
The proof (shown below) follows from a standard bound on Gaussian random variables, and from Lemma 1 in
(Ravikumar et al., 2011).

Lemma 1. Given data generated by the model in Assumption 1 we have that

2
P(IVa (8,0 > 0 < mpesp { ~ 5} (19)
8o Cx
where ¢y« = max; X%, and cx = max;=1,_._n || X;||2/v/m; the mazimum normalized {5 norm over columns of X.
Furthermore,
P(|VAf(A*,0")]ls > €) < 4p?ex __me (20)
AR oo =€) = EPTEXDA T900.2,

for 0 <6 < 40cy+.

The next lemma is a generic primal-dual witness approach, mirroring exactly the derivation in (Wainwright,
2009), but presented in a generic form. For the presentation here, we will use a generic optimization problem
minimize f(6) + A||0]|1, though we will apply this specifically to our CRF problem momentarily. Intuitively, the
lemma states conditions for which optimizing over the known support set is equivalent to optimizing with the ¢4
penalty.

Lemma 2. Consider some sparse 6* with S = supp(0*), and consider the two optimization problems

>

— argmin £(6) + A6
(21)

™

= arg min 1(0)+ 0]

Vs

Define A =60 — 0*, and R(A) = —Vof(0) + Vo f(6*) + V2f(0*)A. Then if the following conditions hold

1. The solution 0 is unique.
2. Mutual incoherence holds, i.c., ||[(V2f(0*))gs(V2f(0*)gsll. <1—a
3. max{[[Vo f(6")[lco; [[R(A) [} < Aat/8

then the £1 solution recovers the restricted solution, 6=0.

In our setting, the A and R(A) are themselves matrices and thus slightly more complex. Thus, for subsequent
lemmas, we define the following terms that we use to quantity the error of the second order Taylor expansions
of our particular log-likelihood, evaluated at the true parameters. For any A, ©, we define Ay = A — A* and
Ag =0 — 0* and

A= { g ] : (22)
Define

RA(Ax, B6) = VAS(AT,07) = VAS(A" + Ay, 07 + Ae) +d(Vaf(A",07); Ap, Ae)

23
Ro(Ap,Ag) = Vo f(A*,0%) — Vo f(A* + Ap, 0% + Ag) + d(Ve f(AF,0%); Ap, Ag), (23)

which are the residuals of the first order Taylor expansion of the gradient (i.e., the errors in the second order
Taylor expansion of the function itself), and

RA(AAyAG)) :| . (24)

k(&) = [ Re(Ax,Ae)

The next lemma bounds the residual ||R(A)||« in terms of the distance from the true parameters, ||Alls.
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Lemma 3. Under the definitions above, if

1 . 1 Co*
Alleo < = , 2
I8l < G {2} (25)
then
IR(A) o < 2066k cB. R A (26)

where cy» = max; j 27

_ L O*
; and cor = max; ; OF;.

Finally, we show that when the gradient evaluated at the true model are sufficiently small, then |A||s itself is
small.

Lemma 4. Under the model above, suppose that

1 1 1
m A 0" A", 07|} < i —Al 2
aX{Hv/\f( 7@ )HOOaHV@f( 7@ )HOO} — QCH* |:m1n{302*d,412C§:*C(2_3*C§(d2} A:l ( 7)

Then
[Alloo < 2¢h+ (max{[[Vaf(A*, 0%)[loo; Vo f(A*,0%)[loc} + A) (28)

where cg» = max; j H;, the mazimum element of the Hessian evaluated at the true parameters.

157
These elements allow us to prove the desired theorem.

Theorem 1. Using assumptions 1-3 above, suppose we have sample size
m > 4122C%d*(1 4 8/)? log(pn) (29)

where C' = max{3cs+, cgt, ch.ci.ck} and choose \ as
1 log 4
A > (8/a)cy- cx /3200 Og(p")% (30)
then with probability greater than 1 — ci exp(—camA?) we have

1. The solution to the {1 regularized optimization problem, A, ©, has nonzero entries that are a strict subset
of the nonzero entries of A*, ©*

2. The solution satisfies the elementwise bounds

~ ~ 1 log 4
max{[[A - Ao, |6 — ©* |} < 2(1 + 8 V)epe corcxv/3200 Og(p")% (31)
Proof. Let
log(pn) + log4
0= Co+xCXV 3200 T (32)
Then by Lemma 1 and the minimum bound on m we have that
max{||Ve f(A", 0%)lloc, [[VA (A", 07)[[oc} <6 (33)

with probability greater than 1 — ¢; exp(—camA?); we proceed with the proof conditioned on this event. Next,
note by our choice of A we have that 6 < aA/8 and thus the first half of the third condition for Lemma 2 holds.
It remains to show that R(A) < aA/8. By our minimum bound on m and our choice of A\ we have that

8 1 1 1
1+4—)0< i 34
< + a> = e { 3esed’ 41268, ¢ & d? } (34)

and thus Lemma 4 applies, which gives

8
N (1 + a) 5. (35)
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Therefore, the assumption of [|Alls < 4 min{

1 Co

e °*} holds and we apply Lemma 3 to establish

IR(A)|loo < 2065 e 5 d?[|Al|%,

2
8

< 824c%. ¢ cxd*ep (1 + ) 52
a

8\ .| ax (36)
< l824c‘§*62@*c§<d201{* (1 + a) 6] %
af)\
— 8 .

Finally, note that our Assumption 2 implies that the solution (1~\, (:)) is unique and thus combined with the above
derivation and Assumption 3, we the conditions for Lemma 2 and thus we conclude that (A,©) = (A, ©) and
the thus claim 1 and 2 are satisfied.

C.1. Proofs of Lemmas

Proof. (of Lemma 1) Let X be given and assuming that Y is generated according to our model. We first consider
P (Ve f(A*,0%)|lcc > €); as shown in Appendix A, we have

Vof(A,©)=2S,, +25,,0A7L. 37
Yy

Writing 8* = —©*A*~! and ¥* = A*~!, we have Y = X3* + Z where Z € R™*? has rows Z; ~ N(0,%*), and
thus

2 2
28y + 28,0 = (XY - XTXxp*) = =XTZ (38)
m m
By our assumptions that | X;||2/v/n < cx for all columns of X and the maximum diagonal entry X* is 2., we
have s
2 degs
Var (XiT Zj) < ZLorfx (39)
m m
for any columns X; and Z;. Therefore by the union bound and Gaussian tail probability we have
PlIEXTZ)0 > ) < 2npe me’ (40)
il w>e) < wpd
m pexp 8cZ.c%
Next, we consider P (||Vaf(A*,0%)||s > €) and again from Appendix A, we have
Vaf(A,©) =8, — At —AteTs, 007! (41)
which we can rewrite as 1
Syy — A=A TrOTS, 0 A = —ZT7 - 57 (42)
m
Now we can apply Lemma 1 in (Ravikumar et al., 2011) and arrive at the desired bound
P 2277~ S > € < 4pPc me” (43)
il _ o> xpd —
m PmEEPA T 32002,
for 0 < € < 40¢y+. O]

Proof. (of Lemma 2)

The proof here proceeds exactly as in (Wainwright, 2009) and (Ravikumar et al., 2011), so we describe it relatively
quickly. The goal is to show that when solve the restricted problem, the resulting 6 (which is zero outside the
support set S) is also optimal for the full ¢; problem. Defining A = 6 — 6*, the the full ¢/, optimization problem
can be written as

V2F(0*)A + Vof(0*) — R(A) 4+ Az = 0. (44)
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If we can show that [|z]|eo < 1, then 6 is an optimal solution to the original ¢; problem, so 6 = 6. Furthermore,
the solution # cannot have support outside the support of 6*.

We can write the above optimality condition in terms of S and S, using H = V2f(6*) and g = Vyf(6*) for

simplicity
Hgs Hss}[As] [gs] [R(A)S] [Zs}
+ + +A 45
{ Hss Hgs 0 95 R(A)s g (45)
Using the fact that
As = Hgg(R(A)s — gs — Azs) (46)
we can solve forzg gives
1 1 1 . . 1
Z5 = —XHgsAS + X(R(A%‘ —95) = XHS'SHSS (9s — R(A)s) + HggHggzs + X(R(A)S - 9s) (47)
Thus 5 5 \
-« —aa«
175llec < ——=(llglloc + [R(A)]loc) + 1~ < ———F+1-a <L (48)
O

Proof. (of Lemma 3) Since R(A) is the residual of the first order Taylor expansion of the likelihood gradient, by
the mean value theorem we have that the exists ¢ € [0, 1] such that

RA(AA,A@) :dQ(VAf(A*+tAA,@*+tAA);AA,A@) (49)

and similarly for Rg(Ax, Ag). The first and second differentials of these gradient terms are given by (note that
since these are the differentials of a matrix-valued function, we cannot simplify as many of the expressions as we
did for the differential of the likelihood function)
Ad(VAf(A*,0%);U, V)= ATTUA T+ A7 UATOTS, .00 + A1OT S, OA U —
AVTS,OA - ATreTS,, VAT
d*(VAf(A*,0%);U, V) = 2A'UATUA —2A ' UA'UAT'OT S, OA7 —
2AT'UAT'OT S, 0AT T UAT = 207107 S, OATTUATTUAT! +
2ATTUATWWTS,, OA + 20T UATIOT S, VAT + (50)
2A' VTS, OATTUA + 207107 S, VATIUAT! —
2A VTS, VAT
d(Vef(A*,0*);U, V) = —25,,0A ' UA™" + 2S5, VA~
d*(Vef(A*,0*);U, V) = 4S,, OA'UATUA — 48, , VATIUA!
For example, RA(Ap, Ag) is equal to the second expression with the A* terms replaced by A* + Ay, the ©*

terms replaced by ©* + Ag and U and V replaced by Ay and Ag respectively. To bound R(A), we bound each
of these terms individually.

Although the expression is rather lengthy, note that each term in the second differentials has a quadratic expres-
sion in Ax and Ay, with at most four (A* +tA,)~! terms, two ©* +tAg terms and one S,, term. Furthermore,

we use the fact that
[ABC||oe = [[(CT @ A) vee(B)lloo < NIC4 1Al o1 Bllo (51)

to place the vector infinity norm around the S, term in all cases, since ||Syz||co < ¢%. Thus, each term in the
second differential is bounded by

KN +tA0) ML NOr + tAelFlIAll, (52)

Now, first note that since A as a most d entries per column

Al < dljAle- (53)
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Now, note that

(A* +tApN) " = (T +tA*TAL) 7! (54)
and
e . .
(T4 tATTAL) T =D (=) (tA ALY (55)
i=1
so that
ICA* +¢A2) Mo < IA* Ml DoNA* I N AA NI
i=1 (56)
< Cyx 362*
T l-cd||Alle T 2
Furthermore,
1 30@*
107 +tAell, < l1©7[l, + lAell; < cor + FdlAlloc < —~- (57)
Combining these expressions results in the bound
IR(A)]los < 206¢5;. B cXed®[| A% (58)
as required. |

Proof. (of Lemma 4) Let (A*,©*) be the true parameters with support S and (A, ©) be the solution to the
optimization problem restricted to this support set. Our goal is to bound ||Allo where A = [AjAg] with

Ay =A—A"and Apg =60 — O~

Define
7= 2cp+ (max{[|[Va f(A", ©7) o, [[Ve [(A*,0%)[[oc} +A) (59)

and note that by assumption we have

rgmm4mm{ ! ! }) (60)

3esed’ 41264, c2). cxd?
To bound ||Al|s observe that we have Ag = 0 and
As = Hig' (Rs(A) + Gs = AZs) (61)

as shown in the proof for Lemma 2. Our approach will be the same as that of (Ravikumar et al., 2011), using
Brouwer’s fixed point theorem. To do so, note that we can view the RHS of the above equation as a continuous
function of A and thus by Brouwer’s fixed point theorem on a compact set, it suffices to show that if show that
if [[Ag|loo <7 then |[Hig'(Rs — Gs — AZs)|loo < 7 as this implies that there is a solution to this equation such
that |[Ag|| < and by uniqueness (from Assumption 2) this solution must be (A, ©).

Taking infinity norm, we have
1As]leo < 1Hgs oo IR(A) oo + 1 H55 oo llGs = AZs oo (62)

For the first term, through application of the bound on R(A) and by assumption on ||A||«

155 ool R(A) |0 < 2065 7-c5echexd? | A3, <

N3

And for the second term ,
[Hs 1o lGs = AZslloe < Er+([|Glloo + A) < 5

I
—~
D
N
N

and thus the claim is proven. O
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Figure 1. The chain CRF with 3 input variables and 3 output variables.
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Figure 2. The mutual incoherence condition ||Hgg(Hss) *||., while varying p and .

D. Mutual Incoherence for the Chain CRF

In this section we consider the mutual incoherence condition for the chain CRF, illustrated in Figure 1. For
simplicity, we consider a class of models parameterized by two variables: p describing the conditional dependence
between the output variables and § describing the relative influence of the input variables on the output variables.
In particular, the class of models specified by

1 p 0 8 0 0
A =1fp 1 p| © =10 p8 0 (65)
0 p 1 0 0 pB

with positive p and .

We are interested in characterizing the range over which the mutual incoherence condition
-1
[Hss(Hss) Ml <1 (66)

holds. Note that the Hessian (given in Appendix A) depends not only on these parameters, but also on the
empirical covariance of the input features, S,,; for the purpose of this illustration, we take S, to be the identity
matrix, representing an ideal case in which the input features are perfectly uncorrelated. Under these conditions,
we can see from Figure 2 that mutual incoherence indeed holds over a range of the parameters. However, as p
increases and the output variables become more correlated, we approach the boundary at which this assumption
is no longer valid.
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