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Abstract:Wind energy is a key renewable source, yet wind farms have relatively high cost compared with many traditional energy sources.
Among the life cycle costs of wind farms, operation and maintenance (O&M) accounts for 25–30%, and an efficient strategy for management
of turbines can significantly reduce the O&M cost. Wind turbines are subject to fatigue-induced degradation and need periodic inspections
and repairs, which are usually performed through semiannual scheduled maintenance. However, better maintenance can be achieved by
flexible policies based on prior knowledge of the degradation process and on data collected in the field by sensors and visual inspections.
Traditional methods to model the O&M process, such as Markov decision processes (MDPs) and partially observable MDPs (POMDPs),
have limitations that do not allow the model to properly include the knowledge available and that may result in nonoptimal strategies for
management of the farm. Specifically, the conditional probabilities for modeling the degradation process and the precision of the observations
are usually affected by epistemic uncertainty. Although MDPs and POMDPs are formulated for fixed transition and emission probabilities,
the Bayes-adaptive POMDP (BA-POMDP) framework treats those conditional probabilities as random variables and is therefore suitable for
including epistemic uncertainty. In this paper, a novel learning and planning method is proposed, called planning and learning in uncertain
dynamic systems (PLUS), within the BA-POMDP framework that can learn from the environment, update the distributions of model param-
eters, and select the optimal strategy considering the uncertainty related to the model. Validating with synthetic data, the total management
cost of a wind farm using PLUS is shown to be significantly less than costs achieved by a fixed policy or through the POMDP framework.
The preliminary results show the promise of the proposed methodology for optimal management of wind farms. DOI: 10.1061/(ASCE)CP
.1943-5487.0000390. © 2014 American Society of Civil Engineers.

Author keywords: Optimal planning and learning; Sequential decision making; Wind farm management; Markov Chain Monte Carlo;
Reinforcement learning.

Introduction

Wind energy is playing an ever-increasing role worldwide as a
renewable source. As a result, there will be an increasing demand
for careful management of costs associated with operation and
maintenance (O&M) of wind turbines, which on average account
for approximately 25–30% of the overall energy generation costs
(Marquez et al. 2012). To make wind energy sustainable and
competitive with other sources, accurate risk assessment and effec-
tive management of wind farms are necessary. Farms are made up
of many similar turbines, each of which is a complex system, in-
cluding structural, mechanical, and electrical components; their
conditions degrade because of aging, fatigue load, and exposure
to environmental risks. Managing a wind farm includes selecting
appropriate operation and maintenance levels for the turbines,
scheduling visual inspections, and performing maintenance/repair/

replacement actions. A rational manager has to find a reasonable
tradeoff between a conservative maintenance policy, profitably ex-
ploiting the farm, and exploring the interaction of the turbines
with the environment. Thus, a robust decision making tool is
needed to automatically evaluate the uncertainties related to the
environment. In this context, the overall goal is to find an optimal
policy that maximizes the total expected reward of the system
over a finite or infinite time horizon, making use of probabilistic
models for predicting the degradation of the system and the effects
of rehabilitations.

In the literature, methods based on the partially observable
Markov decision process (POMDP) framework have been recently
proposed for optimal management of wind farms (Byon et al. 2010;
Byon and Ding 2010; Nielsen and Sorensen 2012), fixing the
model parameters based on the historical data and finding the op-
timal policy based on them. The purpose of this paper is to address
the main limitation of POMDPs. In a POMDP framework, the
probabilities defining the state transitions and the accuracy of the
observations are fixed as if known with certainty. On the contrary,
in most real-world management problems, the transition probabil-
ities (modeling the degradation process and the effectiveness of the
maintenance actions) and the emission probabilities (modeling
the precision of sensors and visual inspection) are themselves
also affected by large uncertainty. However, these models can
be learned from the data collected. Specifically, the framework
of the Bayes-adaptive partially observable Markov decision process
(BA-POMDP) (Ross et al. 2011) allows treatment of the state
transition and emission probabilities as random variables, whose
distribution can be learned and updated during the process of
monitoring and management.
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This paper makes two contributions: (1) a BA-POMDP model
for O&M processes is developed that accurately captures the
epistemic uncertainties in this setting; and (2) a new algorithm
is proposed for approximate learning and planning in the
BA-POMDP framework, PLUS, which is demonstrated to perform
better than existing methods in the present setting.

The remaining parts of the paper include the notation and the
primary frameworks for sequential decision making, the proposed
methodology, the application of the methodology to a numerical
example, and conclusions.

Related Work

This section introduces the classical methodologies of robust deci-
sion making and reinforcement learning upon which the PLUS
algorithm is built.

Markov Decision Process

A fundamental model for sequential decision making is the Markov
decision process (MDP) [introductions are provided in the textbook
of Bertsekas (1996) and Sutton and Barto (1998)]. In an MDP, the
environment is modeled as a finite set of states and actions that an
agent can take. The goal is to choose actions that maximize the total
expected reward. A typical MDPmodel is shown in Fig. 1. Figs. 1, 2,
and 4 are based on the “two time slice Dynamic Bayesian net-
work” notation adopted by the textbook of Koller and Friedman

(2009). The boxes with dashed edges include the variables for each
time step. Subscript t indicates that a variable is referred to time t.
Circles refer to random variables, squares to decision variables,
diamonds to utility variables, and dots to model parameters.
Variables outside the boxes are time-independent. Shaded nodes
indicate variables observed by the agent. Arrows indicate depend-
encies among variables by reporting how each variable in the right
box (i.e., at time tþ 1) is related to other variables. The notation
effectively provides a template for unrolling the model into a
graphical model, where the random variables, actions, and rewards
are modeled at each time step.

An MDP is defined by a 5-tuple (S, A, T, R, γ), in which the
following are true:
• S is a finite set of states of the system.
• A is a finite set of possible actions that an agent can take. These

actions affect the system evolution and the reward that the agent
receives.

• T∶S × A × S → ½0; 1� is a transition probability function. It
models the uncertainty in the prediction of the next state stþ1

given the current state st and action at. Formally, it is defined
as Tðs; a; s 0Þ ¼ Pðstþ1 ¼ s 0jst ¼ s; at ¼ aÞ, where PðXjYÞ
indicates the conditional probability of event X given event
Y. In the MDP, the Markov property holds the following:
given the current state of the system and the action that an
agent has taken, future states are independent of the past,
so that Pðstþ1 ¼ s 0jāt; s̄tÞ ¼ Pðstþ1 ¼ s 0jat; stÞ, where s̄t ¼
fs0; s1; s2; : : : ; stg and āt ¼ fa0; a1; a2; : : : ; atg indicate the
sequence of states and actions, respectively, from the beginning
of the process up to time t.

• R∶S × A → R is a reward function. Based on the current state s
and the action a, the agent receives reward Rðs; aÞ. It can repre-
sent an immediate payoff (positive reward) or a cost (negative
reward).

• γ ∈ ½0; 1Þ is a discount factor that discounts the future rewards
and relates them to present value.
In the MDP framework, the agent starts in an initial state, s0.

At any time step t, the agent observes the current state of the sys-
tem, st, performs an action at, receives a reward Rðst; atÞ, and
moves to the next state stþ1 with probability Tðst; at; stþ1Þ. This
process is iterated up to a finite time horizon or indefinitely in
the so-called infinite horizon problem.

A policy, π∶S → A, is a mapping from state space to actions.
The value of a policy is the corresponding expected sum of dis-
counted rewards when starting in some state and executing actions
according to the policy. The optimal policy π� is that achieving the
maximum value. This paper focuses on the infinite horizon prob-
lem, in which the optimal policy is stationary and its value is de-
scribed by Bellman’s equation

V�ðsÞ ¼ max
a∈A

�
Rðs; aÞ þ γ

X
s 0∈S

Tðs; a; s 0ÞV�ðs 0Þ
�

ð1Þ

Optimal policy for MDPs can be identified by two classical
methods: value iteration and policy iteration. The details of these
algorithms can be found in Sutton and Barto (1998) and Russell
and Norvig (2010).

Recently, researchers have been trying to incorporate uncer-
tainty in the transition probabilities of the MDP framework directly
in the formulations to find policies that are both optimal in terms
of maximizing the total expected reward and robust to errors in the
parameters (Bagnell et al. 2001; Iyengar 2005; Li and Si 2007; Nilim
and Ghaoui 2005). Bagnell et al. (2001) have proposed a stochastic
dynamic game to solve the problem of MDPs with uncertain tran-
sition probabilities. The proposed solution is equilibrium of the game

Fig. 1. MDP model

Fig. 2. POMDP model
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that corresponds to the value function under the worst model. Li and
Si (2007) have proposed a new optimality criterion that is a basis for
development of robust policy iteration to solve MDPs with uncertain
transition probabilities. Nilim and Ghaoui (2005) have solved the
uncertain MDP problem in the context of finite and infinite horizon
using robust value iteration. The authors’ considers uncertainty in the
model but does not assume that the state is completely observable.

Partially Observable Markov Decision Process

One of the primary limitations of a MDP is that it assumes that the
state of the system is fully observable, which is not true in most
real-world applications. A partially observable MDP (POMDP)
is a generalization of the MDP (Smallwood and Sondik 1973;
Sondik 1978). In the POMDP framework, the exact state of the
system cannot be observed directly but can only be inferred by indi-
rect observations. A typical POMDP model is shown in Fig. 2.

A POMDP is defined by an 8-tuple (S, A, Z, T, O, R, γ, b0), in
which S, A, T, R, and γ are defined as in MDP. The others are
defined as follows:
• Z is a finite set of observations the agent has access to.
• O∶S × A × Z → ½0; 1� is the emission probability, which gives,

for each action and resulting state, a probability distribution
over the observations. Oðs; a; zÞ ¼ Pðzt ¼ zjst ¼ s; at−1 ¼ aÞ
defines the probability of observing z given that the agent has
taken action a and landed in state s.

• b0 ¼ Pðs0Þ is the initial belief state.
The belief state at time t is the posterior probability of the state

of the system, given past and present observations, formally de-
scribed as bt ¼ Pðstjāt−1; z̄tÞ, where z̄t ¼ fz1; : : : ; ztg indicates
the sequence of observations. It is assumed that, in the initial step
t ¼ 0, the agent does not receive any observation. The current be-
lief state is a sufficient statistic for all past actions and observations
so that action selection can be based only on the current belief state
without loss of information. The belief state bt belongs to B, the
space of probability distributions over the states of the system S.
Belief at time tþ 1 can be updated from that at the previous step
and observation ztþ1, using the Bayes rule

btþ1ðs 0Þ ¼
Oðs 0; at; ztþ1Þ

P
s∈S Tðs; at; s 0ÞbtðsÞP

s 0 0∈S Oðs 0 0; at; ztþ1Þ
P

s∈S Tðs; at; s 0 0ÞbtðsÞ
ð2Þ

A POMDP is equivalent to an MDP in the belief state, as shown
by Aoki (1965) and Astrom (1965). In the context of POMDPs, a
policy π∶B → A is a mapping from the space of belief states to
actions. Bellman’s equation for optimal policy π� can be formu-
lated as

V�ðbÞ ¼ max
a∈A

�X
s∈S

bðsÞRðs; aÞ þ γ
X
z∈Z

Pðzjb; aÞV�ðb 0Þ
�

ð3Þ

where distribution b 0 is updated belief btþ1, according to Eq. (2),
with a ¼ at, z ¼ ztþ1, b ¼ bt, and conditional probability
Pðzjb; aÞ is computed as

Pðzjb; aÞ ¼
X
s 0∈S

Oðs 0; a; zÞ
X
s∈S

Tðs; a; s 0ÞbðsÞ ð4Þ

In principle, a POMDP is solved by applying the methods to
solve MDPs to the belief state. However, as the belief state is a
probability distribution, it is defined on an infinite space, and so
exact solution for the POMDP is not generally available. In reacting
to the observations collected, an agent can select one conditional
plan among the many available (Russell and Norvig 2010).

The conditional plan can be interpreted as a policy function defined
on the domain of the sequence of observations.

The number of possible conditional plans, nc, grows exponen-
tially with the time horizon assumed for the problem. Let αiðsÞ
define the value of executing the ith conditional plan starting
from perfect knowledge that the system is in state s. The value
of following that plan is linearly related to belief state b as
ViðbÞ ¼

P
sbðsÞαiðsÞ. Fig. 3, a graph inspired by Kaelbling et al.

(1998) that refers to a simple example of a two-state POMDP,
provides a better understanding of these concepts. Belief is com-
pletely described by a scalar value bðs1Þ, as bðs2Þ ¼ 1 − bðs1Þ.
Fig. 3 reports the value for four conditional plans, and the bold line
indicates the optimal value, depending on the belief state.

The optimal value function can be written as

V�ðbÞ ¼ max
i

X
s

bðsÞαiðsÞ ð5Þ

where i is defined on the domain f1; 2; : : : ; ncg. The proof of
Eq. (5) can be found in the work by Smallwood and Sondik
(1973), which shows that the optimal value function for any finite
horizon POMDP is a piecewise-linear and convex function over the
domain B. Eq. (5) cannot be solved explicitly, except for very short
time horizon, because of the high value of nc. However, as Fig. 3
clearly shows, some conditional plans are completely dominated
(e.g., plan 4 in Fig. 3) and can be neglected (Russell and Norvig
2010). Each conditional plan begins with a specific first action, so
Eq. (5) allows defining implicitly the optimal policy π� as, for any
belief state b, the optimal action is that to be executed as first one
in the optimal conditional plan.

Kaelbling et al. (1998) have proposed the so-called witness
algorithm for finding the exact solution to POMDPs through value
iteration. However, this algorithm is not practical when the set of
states, actions, and observations are large. An alternative approach
is to discretize the belief space, using either a fixed grid (Lovejoy
1991) or a variable grid (Zhou and Hansen 2001). The value of any
belief is then defined by interpolation of the points on the grid.
However, in general, regular grids do not scale well in problems
with high dimensionality, and nonregular grids suffer from expen-
sive interpolation routines. Other point-based value iteration meth-
ods restrict the search to the beliefs that can be reached starting
from the initial belief state (Pineau et al. 2003). In particular, one
of the most effective point-based value iteration methods is succes-
sive approximations of the reachable space under optimal policies
(SARSOP) (Kurniawati et al. 2008), which identifies the optimally
reachable belief states and approximates the optimal value function

Fig. 3. Simple example of value function for two-state POMDP model
(adapted from Kaelbling et al. 1998)
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using this set. SARSOP represents the state-of-the-art in solving
POMDPs in terms of efficiency and accuracy. As all algorithms
for POMDP, SARSOP formally solves the finite horizon problem,
but it can be used as an approximation to also solve the infinite
horizon case.

Bayes-Adaptive Partially Observable Markov Decision
Process

The BA-POMDP framework is a generalization of POMDP, where
the transition and emission probabilities, T and O, are unknown
components of the system and are treated as random variables, with
a prior distribution PðT;OÞ. The BA-POMDP model is shown in
Fig. 4. Technically, the BA-POMDP model can be interpreted as a
POMDP with a continuous state space and with an augmented be-
lief state that also includes T and O. The augmented belief state at
time t is now defined as ~bt ¼ Pðst;T;Ojāt−1; z̄tÞ. In principle, the
belief at time t can be expressed as a function of that at the previous
step, as in the POMDP formulation reported in Eq. (2). However,
as in most cases, any closed-form representation of the posterior
cannot be found; in a BA-POMDP, it is easier to express the belief
at any step by integrating the joint probability:

Pðst; T;Ojāt−1; z̄tÞ ∝ Pðz̄t; stjT;O; āt−1ÞPðT;OÞ
¼ PðT;OÞ

X
s̄t−1∈St

Pðz̄t; s̄tjT;O; āt−1Þ

¼ PðT;OÞ
X

s̄t−1∈St
Pðs0Þ

� Y
s;a;s 0∈½S×A×S�

½Tðs; a; s 0Þ�Na
ss 0 ðs̄t;āt−1Þ

�

×

� Y
s;a;z∈½S×A×S�

½Oðs; a; zÞ�Na
szðs̄t;āt−1;z̄tÞ

�
ð6Þ

where St = set of possible sequences of states up to time t;
Na

ss 0 ðs̄t; āt−1Þ = number of times the transition ðs; a; s 0Þ appears
in the process; and Na

szðs̄t; āt−1; z̄tÞ = number of times the emission
ðs; a; zÞ appears in the process.

Learning is a challenging task in the BA-POMDP framework, as
the posterior is defined by the complicated formula in Eq. (6), and it
is not possible to compute the posterior exactly because the number
of possible sequences of states grows exponentially as the time

horizon grows. It is convenient to adopt a Dirichlet distribution
for the prior distribution PðT;OÞ because that is the conjugate
of a multinomial distribution. In this context, this implies that, after
perfect observation of states s̄t, actions āt−1, and observations z̄t,
the posterior PðT;Ojs̄t; āt−1; z̄tÞ would still be in the Dirichlet
family.

Formally, the Dirichlet distribution (which is indicated as
“Dir”) is the multivariate extension of the beta distribution andFig. 4. BA-POMDP model

Fig. 5. PLUS algorithm

Fig. 6. PLUS learning algorithm

Fig. 7. PLUS planning algorithm
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defines a probability density over discrete distributions. Suppose
q ¼ ½q1; : : : ; qk�T defines a k-dimensional discrete distribution.
The density can be parameterized by count vector ϕ ¼
½ϕ1; : : : ;ϕk�T, listing only non-negative entries. The Dirichlet
probability density on q is defined as

DirðqÞ ¼
Q

K
i¼1 ΓðϕiÞ

ΓðPK
i¼1 ϕiÞ

Yk
i¼1

qϕi−1
i

The textbook of Murphy (2012) gives an introduction to the Di-
richlet distribution. In the model presented in Fig. 4, it is assumed
that s0, T and O are marginally independent, and parameters η and
β define the count parameters of the prior Dirichlet distributions of
T and O, respectively.

The transition probability T can be represented by a three-
dimensional matrix (of size ½S × S × A�) and the parameters η
of the Dirichlet prior probability PðTÞ by a matrix of the same
size as T. Let ηaksi;sj define the counts of transitioning from si to
sj after action ak. After observing s̄t and āt−1, the parameters of
the posterior Dirichlet distribution PðTjs̄t; āt−1Þ are computed as
ηaksi;sj þ Nak

si;sjðs̄t; āt−1Þ, i.e., by simply updating the counts with
the observed state transitions. A similar analysis can be performed
for the emission probability O. However, in the BA-POMDP
framework, states are not observed directly. The augmented belief
state, as expressed in Eq. (6), can also be derived as product
PðT;Ojāt−1; z̄tÞPðstjT;O; āt−1; z̄tÞ: the first term is the posterior
distribution of the model parameters given the observations and
does not belong to the Dirichlet distribution. Rather, this density
is a mixture of Dirichlet distributions, in which each component
corresponds to the counts of one specific possible state sequence,
weighted by the probability of that sequence (Fruhwirth-Schnatter
2006). The next section presents the method to perform approxi-
mate updating in that context.

In the BA-POMDP framework, the optimal policy may be sub-
optimal for any specific value of T and O as long as it maximizes
the value for the entire state of epistemic uncertainty about the
model. Furthermore, the value of a policy also includes the benefit
of taking exploratory actions that help the agent reduce uncertainty
in the model parameters themselves. Generally, a policy maps be-
liefs over ðs;T;OÞ to actions. This suggests that the sequential
decision problem of optimally behaving under state and model
uncertainty can be modeled as a POMDP over the augmented state,
including the actual states of the system and model parameters T
andO. However, solving POMDPs over the infinite space of beliefs
over this augmented state, including continuous components, is not
computationally feasible. The next section proposes the PLUS
algorithm, which is an approximate solution to this computational
complexity.

Jaulmes et al. (2005a, b) have proposed an algorithm called
MEDUSA to find the optimal policy for a POMDP when the model
is not known or poorly specified. The algorithm tries to improve the
POMDP incrementally using selected queries while still optimizing
the total expected reward. The next sections introduce the proposed
PLUS algorithm and compare its performance with MEDUSA and
with the use of a POMDP with fixed parameters.

Proposed Methodology

An approximate method is proposed for optimally planning
and learning in uncertain dynamic systems (PLUS) within the
BA-POMDP framework. Fig. 5 shows the overall PLUS method,
which is organized in two main parts: learning and planning. The
algorithm can be called at any stage of the process. At time t,

it represents the augmented belief state ~bt by a set of samples,
and it suggests action a�. In the algorithm, notation xðkÞ indicates
the kth sample of variable x.

PLUS Learning Phase

The PLUS algorithm makes use of an approximate method based
on Markov chain Monte Carlo (MCMC) Gibbs sampling (Carter
and Kohn 1994). The present approach is a slight variation of
the beam sampling approach used in the context of infinite hidden
Markov models (Van Gael et al. 2008) and infinite POMDPs
(Doshi-Velez 2010). Fig. 6 shows the details of the proposed algo-
rithm for learning: the method samples T, ON instances of T, O,
and belief state bt from the joint posterior distribution. The
procedure starts with sampling T, O from the corresponding prior
Dirichlet distributions, then alternate between sampling state
sequence s̄t, and sampling T and O. For each fixed T and O, a
state sequence is drawn by forward filtering backward sampling
(FFBS) (Fruhwirth-Schnatter 2006), as described in the next sec-
tion. In turn, as mentioned previously, the posterior distribution
given each sample s̄t is still in the Dirichlet family. Parameter
set η 0 defines the updated Dirichlet distribution for the transition
probabilities, depending on sampled state sequence s̄t, whereas β 0
defines that of the emission probabilities, depending on s̄t and
observations z̄t. After appropriate burn-in phase, this proposed
method is selecting samples from the true posterior distribution.
In Fig. 6, nb indicates the number of samples in the burn-in phase
to be discarded (Murphy 2012), and the notation x ∼ p indicates
that sample x is generated from distribution p.

Forward Filtering Backward Sampling

FFBS is a multimove sampling method for discrete systems
(Fruhwirth-Schnatter 2006). The steps are as follows: (1) for each
time step j ranging from 0 to t, derive the posterior probability
PðsjjT;O; āj−1; z̄jÞ, solving the so-called filtering problem;
and (2) sample state s 0t from the last distribution and s 0j, from
time step j ¼ t − 1 backward to j ¼ 0, from distribution
FðsjÞ ∝ PðsjjT;O; āj−1; z̄jÞPðs 0jþ1jT; sj; ajÞ. The outcome of
FFBS algorithm is the sequence of states fs 00; : : : ; s 0tg sampled
from distribution Pðs̄tjT;O; āt−1; z̄tÞ.

PLUS Planning Phase

The planning method is based on two approximations. First,
neglect the exploratory value of learning variables T;O, i.e., the
system model parameters. The proposed method aims at identifying
the optimal policy as that for transition and emission probabilities
modeled by PðT;Ojāt−1; z̄tÞ, neglecting the updating attributable
to future observations. To formalize the second approximation, de-
fineQT;Oða; bÞ as the quality of a belief-state-action (Q-value) for a
POMDP, i.e., the value of starting from belief b, performing action
a, and following the optimal policy after that for a model defined
by T;O. Identify the optimal action a� for the overall BA-POMDP
by the following approximate formula:

a� ≅ argmax
a

ET;O½QT;Oða; bÞ� ð7Þ

where Ex indicates the statistical expectation, according to actual
knowledge of variable x; and the belief state at time t is defined
as in a POMDP as b ¼ PðstjT;O; āt−1; z̄tÞ. Eq. (7) represents
an approximation because it combines quantities related to optimal
policies for different models. However, do not use the approxima-
tion to estimate the value of the policy but only to select the current
optimal action. Computationally, the advantage of Eq. (7) is that
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QT;Oða; bÞ can be obtained from the results of a POMDP solver,
i.e., SARSOP.

The Q-value of a belief-state-action can be related to the
α-vectors presented in the POMDP section. For a model T;O
and belief b, the optimal conditional plan starting with action a
for each available action can be identified. Define α�

a;b;T;OðsÞ as
the component referring to state s of the corresponding α-vector,
and the Q-value of a belief-state-action can be computed as

QT;Oða; bÞ ¼
X
s

bðsÞα�
a;b;T;OðsÞ ð8Þ

Fig. 7 presents the scheme of the planning algorithm, which is
based on Eqs. (7) and (8). At time t, after the learning phase, aug-
mented belief state ~bt is represented by N samples. The next step is
to solve the corresponding POMDP problem for each sample, using
SARSOP (Kurniawati et al. 2008). The outcome of SARSOP is the
set of m nondominated α-vectors. Among them, the algorithm se-
lects one optimal α-vector per each action: this is the pruning rou-
tine mentioned in the algorithm. α�

j refers to the optimal vector for
the jth action;QðkÞ

j to theQ-value of a belief-state-action for the kth
sampled model under the jth action; and Qj to the expected
Q-value of a belief-state-action for the entire model space, which
is computed by sample average. Action a� is selected by identify-
ing the maximum of Qj among all possible actions.

Numerical Validation

To validate the proposed methodology, a numerical example of
wind farm management is used. It is assumed that the condition
state of each turbine can be modeled by a Markov process
defined by a few states, and the observations collected can be
classified within a few possible discrete values. Although PLUS
can be applied to much more complicated problems, this simple
setup allows the extensive investigation of the performance of
the algorithm so it can be compared to other existing methods.

The condition state of the turbine degrades owing to fatigue and
aging, potentially causing a structural failure and a relevant eco-
nomical loss to the agent. In turn, the agent can perform repairs
to avoid failures and inspections to refine the knowledge about each
condition state. In detail, the farm is assumed to consist of 10 tur-
bines of the same type, so that a unique value of transition and
emission probabilities can be referred to. The cost in Figs. 8, 9,
and 12 refers to the average per one turbine. Specifically, three con-
dition states are assumed: s ¼ 1 refers to an intact structure; s ¼ 2
to a damaged one; and s ¼ 3 to a collapsed turbine. The three
actions are the following: a ¼ 1 corresponds to do nothing (DN);
a ¼ 2 to repair (RE); and a ¼ 3 to performing a visual inspection
(VI). When DN is selected, the condition state evolves according
to the degradation process. RE models a costly intervention, which
is supposed to improve the condition state, whereas VI models an
effort providing only information on the condition state, without
affecting the degradation process. Each time step is assumed to
be six months, and the agent takes one action per turbine at each
time step.

Observations are classified in four discrete outcomes: z ¼ 1 is
intended as a reassuring output, suggesting that the turbine is
undamaged; z ¼ 2 and z ¼ 3 indicate two symptoms of damage;
after recording z ¼ 4, the agent knows that the turbine is collapsed.

As indicated in “Proposed Methodology,” the agent’s prior
knowledge is modeled on transition and emission probabilities
by independent Dirichlet distributions with parameters η and β,
respectively. Parameter η can be represented by three matrices:
ηDN , ηRE, and ηVI , referring to the actions listed above

ηDN ¼ ηVI ¼

2
64
8 4 2

0 4 2

0 0 1

3
75 ηRE ¼

2
64
8 4 0

4 2 0

4 2 0

3
75

The transitions are assumed to be identical for actions DN
and VI. The zeros in the matrix ηDN indicate that after any of these
actions, the condition state cannot improve; therefore, for example,
the turbine stays in a collapsed state after action DN. Generally,
according to this matrix, the turbine in the intact state has a ten-
dency to stay undamaged, but it can also become damaged or
directly collapse, whereas a turbine in the damaged state has a ten-
dency to stay there, but it can also collapse. After action RE, the
turbine cannot be in a collapsed state, but it can still be damaged
because the intervention is not known to be perfect and, even after
a perfect repair, the turbine can transit to the damage state during
the following period, considering the long time step (six months).
As for any feature of the process, the effectiveness of such an in-
tervention can be learnt by the agent during the management his-
tory. Knowledge about emissions, depending on the action, are
modeled by the following values:

βDN ¼ βRE ¼

2
64
8 4 2 0

2 8 4 0

0 0 0 1

3
75 βVI ¼

2
64
4 2 0 0

0 2 4 0

0 0 0 1

3
75

As can be deduced from these matrices, the agent thinks that,
as a tendency, States 1 and 2 generate Observations 1 and 2, re-
spectively, under actions DN or RE. The visual inspection VI is
regarded as possibly imperfect; again, its actual effectiveness can
be discovered during the management process. Independent of the
action, the collapse State 3 is univocally related to Observation 4,
so that the agent is immediately aware of any failure event.

The reward function is the sum of three components: the
costs for repairing, inspecting, and down-time. The agent pays
US$10,000 for any repair, $500 for any visual inspection, and
$50,000 for any time step in which a turbine is in the collapsed
state. The discount factor is assumed to be γ ¼ 0.95.

The belief about the initial state is modeled as

b0 ¼ ½ 0.8 0.2 0 �

therefore, the agent believes that the turbines are in the intact state
with 80% probability and in damaged state with 20% probability.

The behaviors of different turbines in the farm are assumed to
be independent, and the agent refers the planning to the infinite
horizon setting.

The method is validated by two sets of numerical experiments.
First, transition and emission were fixed to a value compatible
with the available knowledge, referring to this as the true model.
The true model was assigned to each turbine in the farm, and the
performance of alternative schemes for learning and planning were
simulated. Next, the planning algorithm was tested for the range of
all possible models representing the turbines.

In both experiments, four types of agents were considered: The
true model agent has perfect knowledge about the true underlying
transition and emission probabilities and adopts a POMDP model
with correct value for T and O, making use of the SARSOP algo-
rithm for planning: this represents an lower bound (in terms of cost
to be minimized) to the performance of any planning strategy under
uncertainty. The expected model agent derives the expected value
of T and O from the prior Dirichlet distribution and again, adopts
POMDP solved by SARSOP: it represents the simplest and most
common approach to solve the planning problem under model
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uncertainty. The MEDUSA agent makes use of the algorithm de-
scribed in Jaulmes et al. (2005a, b), whereas the PLUS agent adopts
the method that was presented in “Proposed Methodology.”

Two different metrics are used to validate the methods. First,
the immediate and cumulative management cost for assessing
the performance of the planning methods is evaluated because they
are directly related to what each agent is trying to optimize. For
additional validation of the learning process itself, evaluate the
Kullback-Leibler (KL) divergence (Cover and Thomas 2006) be-
tween the transition (or emission) probabilities as modeled by the
posterior distribution and in the true model. The KL divergence is a
nonsymmetric measure of the differences between two probability
distributions. Specifically, the KL divergence of distributions Q
from distribution P (both are distributions defined on n discrete
values), denoted as DKLðPjjQÞ, is a measure of information lost
when Q is used to approximate P, and is defined as

DKLðPjjQÞ ¼
Xn
i¼1

ln

�
PðiÞ
QðiÞ

�
PðiÞ ð9Þ

where ln = natural logarithm. In computing the KL divergence
between two transition (or emission) models, the results referring
to the average over all values of st and at.

Learning and Planning Validation

The first numerical campaign is devoted to the validation of the
planning and learning algorithms. To do so, a model is fixed and
assigned to all turbines. This is called the true model, and it is de-
fined by transition T� and emission O�, as listed in the following:

T�
DN ¼ T�

VI ¼

2
64
0.9 0.08 0.02

0 0.9 0.1

0 0 1

3
75 T�

RE ¼

2
64

1 0 0

0.9 0.1 0

0.9 0.1 0

3
75

O�
DN ¼ O�

RE ¼

2
64

0.8 0.1 0.1 0

0.05 0.9 0.05 0

0 0 0 1

3
75 O�

VI ¼

2
64
1 0 0 0

0 0 1 0

0 0 0 1

3
75

This specific model describes a turbine that is more reliable than
that defined by the expected value of the distribution reported in the
previous section. These models were selected by adapting exam-
ples from the literature (Byon et al. 2010; Byon and Ding 2010;
Nielsen and Sorensen 2012) after discussion with industry experts
from EverPower Wind Holdings (Pittsburgh, PA). For example, the
probability of a collapse in one 6-month period, for an intact tur-
bine, is only 2%. The emissions related to the visual inspection
models perfect information on the condition state.

For each agent, the management of the wind farm is simulated
20 times, and the average outcome is plotted in Fig. 8. In each sim-
ulation, the initial state is sampled according to the distribution b0.
Fig. 8(a) reports the average immediate cost versus the time step.
The dashed line represents the true model agent, the line represents
the expected model agent, and the dash-dotted line represents the
PLUS agent, whereas other lines refer to the MEDUSA algorithm,
with a learning rate (LR) of 0.1, 0.5 and 1.

Each agent starts with a low cost in the first steps owing to the
good state of the turbines as assumed by the initial belief state. The
true model and the expected model agents adopt a stationary policy,
and the corresponding immediate cost converges to a constant
value, which is approximately $2,200/6 months for the former,
and $3;500=6 months for the latter agent. Fluctuations are attrib-
utable to randomness in the average of the small set of simulations.
Agents adopting the MEDUSA and the PLUS algorithm, on the

other hand, adopt nonstationary policies because of the learning
process. At each time, the knowledge about the model is affected
by processing the previous observations, and the policy varies ac-
cordingly. Ideally, if sufficient information is collected, the policies
(and consequently the immediate cost) of these agents should con-
verge to that of the true model agent. As expected, it is apparent
from the figure that the immediate cost grows in the first phase
(i.e., the first 10–20 steps) and then is reduced in time because
of the effect of learning. The PLUS algorithm also performs well
in the first phase because of the robust algorithm for planning. After
30 steps, the immediate cost is approximately $2,600=6 months.
In this simulation, the MEDUSA algorithm achieves a higher cost
for a range of different learning rates. The benefit of the PLUS
algorithm over the expected model approach can be quantified
as approximately $1,000=6 months.

Fig. 8(b) shows the cumulative costs of O&M, computed as the
integral in time of the curves plotted in Fig. 8(a). This representa-
tion is useful for assessing the long-term benefit of adopting alter-
native schemes. In a 100-step period (corresponding to 50 years),
the true model agent expects a cost of approximately $220,000; the
expected model agent a cost of approximately $350,000, whereas
the PLUS agent expects a cost of approximately $250,000. Thus,
the benefit of adopting PLUS is quantifiable to approximately
$100,000 for this period. These costs and savings are for a single
turbine, and the costs and savings regarding the entire farm is ten
times higher.

Fig. 9 shows the cumulative costs for O&M of a wind farm
for PLUS, true model, and POMDP agents, including the 95%
confidence intervals.
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Fig. 8. Costs for O&M of a wind farm versus time for six agents:
(a) immediate; (b) cumulative
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Fig. 10 focuses on the learning process, showing the evolu-
tion of the KL divergence between the posterior distribution of
the model, as formulated by each agent, and the true model.
Fig. 10(a) plots the transition probabilities and Fig. 10(b) the
emission probabilities. The expected model agent does not learn
during the process; and consequently, the KL divergence is con-
stant. The agents using MEDUSA or PLUS update their knowl-
edge during the management process, and the KL divergence is
expected to go to zero when the information encoded in the col-
lected observations is sufficient to identify the model. For these
agents, the KL divergence is computed as the average from a
set of samples generated according to the posterior distribution
(as illustrated in “PLUS Learning Phase,” PLUS algorithm re-
quires the generation of samples, so this further computation is
straightforward). This study used 10 samples in this simulation.
As shown in the figure, the learning is fast in the initial phase,
but it becomes slow as more and more observations have been
already collected. According to this simulation, the MEDUSA
agents learn the transition probabilities well but not the emission
probabilities [Fig. 10(b)]. MEDUSA learns the emission probabil-
ities poorly, perhaps because of the different planning approach
compared with PLUS, and may need more data. However, in
the long run, provided that sufficient exploration is performed,
MEDUSA is conjectured to asymptotically learn the true model.
Generally, MEDUSA and PLUS are different in terms of the
tradeoff between computational cost and accuracy: MEDUSA is
computationally cheaper and easier to scale; however, it provides
less accurate solutions compared with PLUS.

Fig. 10 shows that initially the KL divergence of the expected
model agent is lower than that of the PLUS agent. This is a ran-
dom effect owing to the selection of the true model in this
simulation. The expected model agent adopts the mean transition
and emission. Depending on the actual model of the turbine, it
may be the case that the KL divergence can be arbitrarily small,
and possibly much smaller than that of the PLUS agent. In other
words, it may be the case that the model assumed by the expected
model agent is actually the correct one; and therefore, no learning
is needed. Generally, the performance of the alternative methods
depends on the specific actual model. In the next section, a val-
idation of the planning algorithm is performed for all possible
models.

Fig. 11 shows the same results in Fig. 10(a), including the
95% confidence intervals for the learning process of PLUS agent.

Planning Approach Validation

The outcomes of the previous section highlight that the PLUS
algorithm outperforms the expected model agent. It is possible,
however, that this benefit derives only from the learning process.
The second experiment aims specifically to validate the planning
algorithm only, removing the learning effect. The expected benefit
of a method cannot be assessed by referring only to a single model,
so in this campaign a set of samples are drawn from the prior
distributions of models, and the performance of the methods are
averaged across these scenarios.

Fig. 12 reports the immediate and cumulative costs of O&M,
for the true model, the expected model, and the PLUS agents.
Again, the true model agent represents a lower bound, lead-
ing to an immediate cost of approximately $2,900=6 months,
whereas the expected model agent achieves a cost of approxi-
mately $8,300=6 months, and the PLUS agent a cost of approxi-
mately $7,700=6 months. The difference between these latter
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Fig. 9. Cumulative costs for O&M of a wind farms versus time for
three agents, including the 95% confidence intervals
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Fig. 10. Performance of the proposed learning methodology (PLUS)
compared with MEDUSA (with different learning rates) and POMDP
(does not involve learning); the graphs show the KL divergence
between each model and the true model: (a) transition; (b) emission
probabilities
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values, i.e., $600=6 months, quantifies the benefit of adopting the
robust planning approach presented in “PLUS Planning Phase” for
the specific example. Naturally, adding the learning process as well
would make PLUS perform much closer to the true model, but this

experiment highlights the value of uncertainty-aware planning
in and of itself. The costs and savings regarding the entire farm
are ten times higher.

Conclusion

A method named PLUS is proposed for learning and planning
within the BA-POMDP framework and applicable to the context
of wind farm management. The BA-POMDP framework over-
comes one of the primary limitations of the POMDP framework
by treating the transition and emission probabilities as random var-
iables, whose distributions can be updated during the learning
process. The PLUS algorithm uses Markov chain Monte Carlo
simulations to find an approximate solution for the BA-POMDP
problem. The approach allows for a rational treatment of data col-
lected by sensors and visual inspections, a reliable tracking of the
condition states of turbines, and robust decision-making support.

The PLUS algorithm has been validated with synthetic data and
is shown to out-perform state-of-the-art reinforcement learning ap-
proaches, such as MEDUSA. MEDUSA was originally proposed
for applications of robot navigation and it scales easier than PLUS,
requiring less computational effort. However, for application to
wind farms, it is believed that the computational drawback of PLUS
is not a significant concern because the computational cost is low
with respect to the direct costs for operation and maintenance of a
wind farm. On the contrary, in this context it is necessary to achieve
a rational and robust selection of the management policy, making
use of the knowledge available at any state of the process. PLUS
allows this; it also allows the agent to learn, during the manage-
ment, the statistics of the degradation process (transition probabil-
ities) and the performance and reliability of the monitoring system
(emission probabilities).
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