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This work considers the task of accurate in-air localization for multiple unmanned or autonomous aerial
vehicles flying in close formation. The paper describes our experimental setup using two small UAVs and the
details of the localization algorithm. The algorithm was implemented on two low-cost, electric powered, remote
control aircraft with wing spans of approximately 2 meters. Our control software, running on an onboard x86
CPU, uses LQG control (an LQR controller coupled with an EKF state estimator) and a linearized state space
model to control both aircraft to fly synchronized circles.

In addition to its control system, the lead aircraft is outfitted with a known pattern of high-intensity LED
lights. The trailing aircraft captures images of these LEDs with a camera and uses the Orthogonal Itera-
tion computer vision algorithm to determine the relative position and orientation of the trailing aircraft with
respect to the lead aircraft at 25Hz. The entire process is carried-out in real-time with both vehicles flying au-
tonomously. We note that the camera based system is used for localization, but not yet for closed-loop control.

Although, an absolute quantification of the error for the in-air localization system is difficult as we do not
have ground truth positioning data during flight testing, our simulation results analysis and indoor measure-
ments suggest that we can achieve localization accuracy on the order of 10 cm (5% wingspan) when the UAVs
are separated by a distance of about 10 meters (5 spans).

I. Introduction

A. Motivation

Recently, there has been increased interest in UAV formation flight for a number of reasons. First, formation flight
offers the possibility for significant energy savings due to reductions in induced drag1. Such energy savings have been
demonstrated for human piloted vehicles2,3, but due to the high pilot workload required to maintain the necessary
spacing tolerances the practice is unlikely to be common until there are robust autonomous formation control systems.
Second, autonomous UAV air-to-air refueling, a maneuver that also requires close formation flight, may greatly extend
range and/or endurance without human intervention. Such systems could also improve the safely of air-to-air refueling
for manned aircraft in low visibility conditions.

Both energy saving formation flight and autonomous air-to-air refueling have a similar and highly critical reliance
on accurate in-air localization between aircraft. For instance, to achieve consistent energy savings in formation flight
the relative position of the two aircraft must be controlled to within about 5% of the wingspan both horizontally and
vertically4. For UAVs of relatively small scale, such accuracy is well beyond the capabilities of single-receiver GPS
and inertial systems. Thus, additional sensors are needed to accurately localize the multiple UAVs in relation to each
other.

In this paper, we present and demonstrate a camera-based tracking system that achieves accurate in-air localization.
While a number of localization methods are possible (most notably a between-vehicle differential GPS (DGPS) system,
as demonstrated for human piloted aircraft in2), we chose to work with a camera-based system for a number of
reasons. First, the ubiquity of cheap, low weight and high quality camera systems means that such systems have ideal
characteristics for UAVs. In contrast, to the best of our knowledge there are no off-the-shelf DGPS solutions that allow
both receivers to be moving over the ground, and the systems that do exist are typically very costly and much heavier
than the comparable camera-based setup. Furthermore, DGPS requires an active communication channel between the
two aircraft, whereas camera-based localization can be achieved via processing only on the trailing aircraft.
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B. Existing Work

There has been some prior research on camera based localization systems for aircraft, especially with applications
to aerial refueling5–7. However, to the best of our knowledge these studies focus on algorithm development and
simulations. To date there have been no published demonstrations of full 6 degree-of-freedom (DOF) in-air localization
using such techniques. In this paper we demonstrate such a system applied to two small UAV platforms flying in
formation.

In our experience, even if noise is included in simulations, algorithms tend to over-perform in virtual environ-
ments. Challenges posed by un-modeled dynamics, external disturbances, and unexpected sensor data are hard to
fully capture without realistic experimentation. The main contribution of this paper is in demonstrating the feasibility
of the concept of vision based in-air localization and providing realistic data sets that can help other researchers to
test their algorithms; therefore laying the foundation for future work in active UAV formation flight control using such
approaches. Although we still ultimately obtain quantitative estimates of the localization errors via simulation, we
emphasize that the final system is demonstrated on the real aircraft while in flight.

II. Experimental Setup

A. Description

Our experimental setup consists of two remote controlled trainer aircraft. Each aircraft weighs about 4 kg, has a span
of 1.8 m, a wing area of 0.6 m2 and cruises at an airspeed between 11 m/s and 15 m/s. They each carry a 4 cell
3900 mAh LiPo battery which powers a 400 W brushless motor (about 200 W in cruise) which gives us flight times
between 10 and 20 minutes. The aircraft were converted to autonomous UAVs by adding a suit of sensors including
GPS, an inertial measurement unit (IMU) and an airspeed sensor. Figure 1 shows the aircraft with two team members
illustrating the scale.

We used the open-source paparazzi autopilot in order to reduce development time — by relying on an existing
architecture, it is possible to take advantage of a development tool chain, ground station (Fig. 12), communication
protocol, community support etc. However, we have also substantially modified some parts of the autopilot in order
to use our own simulation tools and control algorithms. We also developed our own ground station to accommodate
the camera data (Fig. 13). Moreover, the paparazzi autopilot traditionally runs on a micro-controller, but due to the
high computation power requirements of real-time image processing, we migrated the autopilot to an x86 computer
running Linux. We were initially concerned with the control software no longer running in real-time, especially that
many people in the UAV community favor real-time operating systems or micro-controllers. However, we did not see
any performance degradations from the migration.

The vehicles have three different RF links to the ground in two frequency spectra. A 2.4 GHz Wi-Fi link is used
for loading software which is very useful for development. However, it has a fairly limited range, therefore 900 Mhz
Digi xTend radios are used as the primary communication link for both telemetry and uplink of commands. Finally, a
2.4Ghz RC transmitter/receiver pair are used as a safety-link to always allow a trained pilot to take control as well as
perform complicated maneuvers (such as take-off and landing).

The lead aircraft (named Batman) also carries 5 high-intensity LEDs placed at known locations relative to its
center of gravity (CG), while the chase aircraft (named Joker) carries a camera with a known orientation and lo-
cation relative to its own CG. Apart from the LEDs and cameras, the two aircraft are quasi-identical, which makes
development easier since the same components and codebase can be used on both vehicles.

B. Hardware Architecture

We initially planned to use the Paparazzi Autopilot System8 as our autopilot unit to realize autonomous flight. Pa-
parazzi is a free and open-source hardware and software project designed at ENAC University (France) for unmanned
aerial vehicle development. The hardware of the Paparazzi autopilot system consists of the Tiny v2 control board, a
GPS receiver, and two IR sensor boards for attitude measurement. The control board interfaces with the GPS receiver
and the radio modem via UART ports, while the IR sensors are connected to the ADC channels. Apart from control-
ling the servos and motor speed controller directly by outputting its own pulse-width modulation (PWM) signals in
autonomous mode, Paparazzi-Tiny is also able to receive the pulse-position modulation (PPM) frame from the FM
receiver, and decode it into separate (PWM) signals in manual mode, so that a human pilot can takeover and control
the airplane via the R/C transmitter during takeoff, landing and emergency situations. However, we identified some
issues with the original system:

1. Paparazzi-Tiny’s Micro-controller (LPC2148FBD64) has maximum speed of 60MHz, which may not be fast
enough to run our desired vision algorithms.

2. Paparazzi-Tiny has a built-in multiplexer mechanism to select between the autopilot servo commands and the
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Figure 1. Batman and Joker, two RC aircraft converted to UAVs

manual override commands. If the main processor on the board malfunctions, the pilot may lose the ability to
take control of the aircraft.

3. The IR sensors have slow reaction time (4Hz). They are also susceptible to humidity and perform poorly in
cloudy weather.

For these reasons, we decide to augment the original Paparazzi system with a more powerful x86 computer running
Linux (fit-PC2). The Paparazzi-Tiny board now only serves as an ADC converter to obtain measurements on airspeed
and the propulsion battery current and voltage. It could be replaced by any other I/O board with analog inputs. Apart
from providing much higher computation power, the fit-PC2 computer has a number of USB ports via which we can
interface with additional sensors and devices. For the manual override system, a Pololu multiplexer selects between
the autopilot servo commands and the manual RC commands. Unlike the original system, the multiplexer is powered
by the RC receiver directly and is always able to switch into manual override mode even if other parts of the autopilot
fail. This solves the safety problem identified with the original system. Additionally, we used a Microstrain 3DM-GX2
inertia measurement unit (IMU) in place of the IR sensors to obtain higher rate measurements for attitude estimation.
This makes the attitude measurements no longer dependent on local terrain or weather conditions that affect IR attitude
sensors. Figure 2 illustrates the hardware architecture for the autopilot used on both UAVs. The entire system weights
about 400 grams, which is heavy for small aircraft, but is within the payload capacity of our vehicles.

III. Localization

One of the primary technical challenges encountered in autonomous formation flight is the task of accurately posi-
tioning the chase airplane relative to the lead airplane. As previously mentioned, in order to achieve substantial energy
savings from formation flight, the aircraft positioning must be maintained within about 5% of the wingspan both ver-
tically and horizontally. For the small UAVs we consider, this translates to relative positioning accuracy requirements
on the order of centimeters. This is well below the precision of code phase positioning used by commercial GPS units.
Even for experiments with much larger F-18s, NASA researchers had to developed a custom differential GPS (DPGS)
and carrier-phase to obtained precise positioning between the two aircraft. And while DGPS systems do indeed offer a
potential method for accurate localization, the cost, weight, and bandwidth issues of such systems make them less well
suited to UAV applications. Indeed, prior to the vision approach we describe here, our group worked extensively with
a DGPS system, but weight and data bandwidth made it unsuitable to our application; furthermore, all off-the-shelf
DGPS solutions that we are aware of require one of the two receivers to be fixed on the ground, severely limiting
the range and applicability of such hardware. It is also worth worth noting that while possible to achieve centimeter
accuracy with indoor motion capture systems, the usable area they offer is rarely suitable for fixed wing aircraft (which
is why the majority of indoor UAV research uses helicopters or quad-rotors).

A. Camera Algorithm

A viable alternative to GPS is using vision based systems for localization. This approach has been proposed by6,7 and
some work has been carried out in simulation, but here we describe the theory behind the system and our algorithm as
implemented in our UAV system.
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Figure 2. Autopilot hardware architecture used on the UAVs.

The objective of our camera-based localization algorithm is to determine the full 6-DOF transformation between
the lead aircraft and the chase aircraft. Formally, we denote this as finding the 4x4 homogeneous transformation T21
(using the convention that airplane 1 is the leader and airplane 2 is the chase airplane); this matrix has the form

T21 ≡
[

R21 p21
0 1

]
(1)

where R21 ∈ R3×3 is an orthogonal matrix denoting the rotation of airplane 1 relative to airplane 2 and similarly
p21 ∈ R3 is a vector denoting the position of airplane 1 relative to airplane 2. In practice, we are unable to directly

measure this transformation, as the algorithm below will provide the position and orientation of the lead airplane
relative to the camera, i.e. TC1 ; however, presuming that we know the pose of how the camera is affixed to the chase
airplane, T2C (which we can easily measure directly, or determined via a calibration procedure), then it is trivial to
convert between the two, since

T21 = T2C TC1 (2)

or more explicitly,
R21 = R2C RC1 , p21 = R2C pC1 + p2C . (3)

As mentioned briefly above, in order to compute the pose of airplane 1 relative to the camera, we affix a number of
LEDs on the lead airplane, in known positions (in order to guarantee uniqueness of the pose, four points are required,
though we use 5 to allow for redundancy). Intuitively then, given a camera image of these points, we can find the pose
of the lead airplane that minimizes the error between the ideal projected points and the observed image. However,
the most straightforward procedures for this problem (such as direct optimization of the projection error), tend to be
sensitive to local optima, and there can been much work on more efficient algorithms for this problem in the computer
vision community (here this task is known as the perspective n point, or PnP problem). In particular, we employ a
method known as the Orthogonal Iteration (OI) algorithm9, which has been shown to be highly efficient for this task.
Although we refer to this paper for a more complete description of the algorithm, briefly, the procedure is as described
below.

We suppose that we are given a set of n points, the ith such point denoted qi ∈ R3, fixed relative to the origin
of the object (corresponding in our case to the fixed locations of the LEDs relative to the center of the lead airplane).
Assume that the homogeneous image coordinate of the ith point is observed to be zi ∈ R3 = (ui, vi, 1), i.e.,

ui =
xi − cx
fx

, , vi =
yi − cy
fy

(4)

where xi and yi are the actual points in the camera image, cx and cy are the center points of the camera, and fx and fy
are the respective focal lengths; together, cx, cy , fx, and fy are known as the intrinsic parameters of the camera, and
numerous software packages exist to compute these parameters for a given camera (for this work, we use the Caltech
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Camera Calibration Toolkit10). Given these image points, the OI algorithm seeks to minimize a projected object space
collinearity error, given by

E(R, p) =

n∑
i=1

‖(I − Zi)(Rqi + p)‖2, where Zi ≡
ziz

T
i

‖zi‖2
. (5)

where R and p denote the transformation from the camera to the object (i.e., in our case, they correspond to Rc1 and
pc1 ). Although this error cannot be minimized analytically with respect to bothR and p, it can be solved analytically for

either variable alone, using an SVD or least squares respectively. Thus, to minimize this error, the algorithm iteratively
computes

p ← 1

n

(
I − 1

n

∑
i

Zi

)−1∑
i

(Zi − I)Rqi

R ← UV T , where M = UΣV T is the SVD of M =

M∑
i=1

(q′i − q̄′)(qi − q̄).

(6)

where q′i ≡ Zi(Rqi + p), q̄ = 1
n

∑n
i=1 qi, and q̄′ = 1

n

∑n
i=1 q

′
i. We refer to the paper cited above for a derivation of

this algorithm as well as a proof of it’s convergence, but this algorithm in particular has been found to be one of the
more accurate and efficient methods for the PnP problem.

Finally, we note that a number of other issues are involved with converting, in real-time, from actual camera images
to an input format suitable for this algorithm. In our final implementation we use a heavy bandpass lens filter to remove
all colors other than those of the LED (see Fig. 11 below), use an optimized version of the libjpeg library to decode
images in real-time11, then look for areas in the image exceeding a certain relative exposure threshold (the best of up to
seven of these are are taken to be candidate locations for the LEDs). However, since the OI algorithm requires not only
the image points but also the correspondences (i.e., we must specify which of the LEDs in the lead airplane each image
point corresponds to), we actually run the OI algorithm for all possible permutations of the candidate image points
that satisfy certain geometric feasibility constraints (i.e., the lead place cannot be flying upside down, etc). Despite the
complexity of these computations, because of the optimized image processing and efficiency of the OI algorithm, we
can compute these estimates in real-time (up to the 25fps video rate of the camera), on the 1.6 GHz onboard processor.

B. Fusing camera and other sensor measurements

In order to properly fuse the camera localization information with the other sensing in each airplane, we employ an
Extended Kalman Filter. The state of each airplane is represented via 11 state variables: the standard 12 degree of
freedom model, with 3-D position (x, y, z), orientation (φ, θ, ψ) velocity (in the wind frame) (u, v, w) and angular
velocity (p, q, r), but where we assume that v is zero (i.e., we assume zero side-slip angle in the wind frame, since
we have no reliable way of measuring this quantity). The EKF employed to track each airplane individually is fairly
standard, so we describe it only briefly: we treat the filtered IMU orientation and angular velocity estimates (which
themselves combine an accelerometer, magnetometer, and gyroscope) as direct measurements of the airplane orienta-
tion and angular velocity with small noise. One minor issue that arises with this method is that the internal filter of the
IMU cannot know the true accelerations caused by flying in a circle, and thus the filtered orientation will drift slowly
over time; however, for the circles and time scales that were involved in our experiments this was a very minor affect.
We use the airspeed measurement as a noisy measurement of u and the GPS to obtain a noisy measurement of w.
Finally, comparing the GPS velocity and GPS heading to the airspeed and magnetometer heading allows us to obtain a
noisy estimate of the wind; in practice, we estimate the wind using two additional variables in the Kalman filter (with
very low variation over time), and treat GPS groundspeed and heading as measurements of the true 2D velocity in the
wind frame plus the wind velocity. In this manner, we are able to estimate the full 11-D state of the airplane, plus the
wind velocity itself.

Another nice feature of the EKF framework is that it allows us to directly incorporate measurements from the
camera system. In particular, although the filter tracks the absolute state of each airplane, we can also easily incor-
porate relative measurements between each airplane by running a single filter that contains the state estimates of both
airplanes. As long as as no camera measurements are introduced, this dual filter operates the same as two indepen-
dent filters of each airplane’s state. However, we can now incorporate measurements of the relative pose between the
airplanes.

First recall the standard EKF measurement update. Let x ∈ Rn denote the true (unknown) state of the system, x̂ ∈
Rn the estimated state of the filter, and Σ ∈ Rn×n its covariance. Then given some measurement y ∈ Rm = h(x)+r,
where we assume that r ∼ N (0, R), the EKF updates the state estimate according to

K ← ΣCT (CΣCT +R)−1

x̂ ← x̂+K(y − h(x̂))

Σ ← (I −KC)Σ

(7)
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where C ∈ Rm×n is the Jacobian of he measurement function evaluated at the current filter estimate

C =
∂h(x̂)

∂x̂
. (8)

Now given a filter where x̂ contains state estimates for both airplanes (abusing notation slightly, we will refer to the
elements of this matrix as (x̂1, ŷ1, ẑ1, φ̂1, θ̂1, . . . , x̂2, ŷ2, ẑ2, φ̂2, . . .), since it should be clear from context whether we
mean x to refer to the complete state versus just the single position component of the state), it should be clear that we
can treat R21 and p21 (the measurement returned by the camera system), as functions of the state. In particular, letting
R̂21 and p̂21 denote the expected relative pose of the two airplanes given the Kalman Filter estimate, we have that

R̂21 =R(φ̂2, θ̂2, ψ̂2)TR(φ̂1, θ̂1, ψ̂1)

p̂21 =R(φ̂2, θ̂2, ψ̂2)T

 x̂1 − x̂2
ŷ1 − ŷ2
ẑ1 − ẑ2

 (9)

whereR(φ, θ, ψ) denote the rotation matrix formed from Euler angles φ, θ, ψ. Thus we can linearize this measurement
in the standard form, and directly incorporate the output of the OI algorithm in the EKF. One item to note is that this
update technically assumes that each element of the R21 and p21 matrices returned by the OI algorithm are corrupted
with Gaussian noise, which is a poor assumption since R21 must span the lower-dimensional manifold of rotation
matrices; nonetheless, in practice this has a very small effect on the performance of the filter, since we assume camera
measurements to have very low noise relative to GPS measurements. Alternatively one could also directly express
the measurements in terms of an Euler angle different between the two system, thus eliminating this potential source
of error; in practice, this alternative approach makes virtually no difference, so we present the conceptually simpler
approach above.

An alternative approach to what we describe here is to directly incorporate the observed camera images into the
EKF, and include the projective geometry of the camera in the measurement update itself, and indeed we did also
experiment with this method in preliminary tests. However, while this is certainly a viable approach, this is roughly
equivalent to direct non-linear optimization of the projection error for the PnP pose estimation problem, a technique
that, as mentioned above, is typically less robust than the more recent computer vision algorithms. Instead, the method
we propose allows us to use the full power of recent computer vision algorithms for directly estimating the pose, and
allows us to separate out elements such as determining the point correspondences from the EKF itself.

IV. Controls

A. Strategy

Ideally, we would like the lead aircraft to fly in a straight line while holding altitude and airspeed. However this is
impractical due to space restrictions at the flying field. Instead, we opted to fly a circle pattern with as large of a radius
as possible. This leads to a relatively small steady-state bank angle which approximates level-flight. The chase aircraft
flies a similar pattern, but it adjusts its speed, altitude and position relative to the circle based on its best estimate of the
location of the lead airplane. The reason we do this is that we expect in the steady-state and noise free condition the
chase airplane to converge to the same circle as the lead airplane, therefore we use it as a feed-forward for the chase
aircraft controller. Figure 3 illustrates the high-level control strategy, which is effectively an outer loop that produces
target altitudes, airspeeds, heading and bank angles. Through successive loop closure, an inner loop controller then
commands the control surfaces and power system to achieve these targets.

Figure 3. Block diagram of the UAV control architecture.
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B. Model-based LQG control

The inner-loops of the controller use an LQG controller; a combination of an LQR controller and EKF estimator.
The controller assumes a linear dynamics model for the aircraft. This model is constructed in two steps. First, we
estimated the relevant parameters for each airplane by measuring the dimensions, weight, and moments of inertia and
by generating a vortex lattice model of the vehicle using AVL to estimate stability derivatives12 (Fig. 4 shows the
airplane modeled in AVL). In parallel to the control development, we integrated JSBSim, a non-linear 6DOF dynamic
simulator aimed for aerodynamic simulations, with our flight software. This allowed us to test our control algorithms
in both Software-in-the-loop (SITL) as well as hardware-in-the-loop (HITL) simulation environments using the exact
same code that the flight computer runs.

The second step in constructing the model uses machine learning to improve the parameter estimates through
system identification. On some flights the human RC pilot would manually perform control sweeps and excite the
natural modes of the aircraft. The estimated parameters were then varied by a non-linear optimizer to minimize the
discrepancy between the predicted and observed trajectories for the same set of pilot control inputs. With the system
identification done, synthesizing a controller was straight forward with the help of LQR. That being said, a fair amount
of fine tuning of the relative weights had to be done in order to obtain satisfactory responses.

Figure 4. AVL model and cruise analysis of the aircraft.
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C. Circle Tracking

While it is relatively straight-forward to fly around in circles, flying a precise circle with a fixed wing airplane of this
size turned out to be a non-trivial task, especially in the presence of winds. We tried different algorithms and eventually
used an LQR based controller for trajectory tracking. However, in this section we describe another controller which
was extensively used initially. This approach is an adaptation of the steering control of the Stanley car in the DARPA
Grand Challenge13 applied to a fixed-wing aircraft.

The main idea behind the controller is to command a bank angle φ which the inner-loop controllers described in
the previous section can track. By relying on the inner loop controller, we reduce the relative order of the system being
controlled. Moreover, this allows us to easily set constraints on commanded bank angles which is difficult to do if
commands are directly issued to the control surfaces (ailerons in this case). For brevity, we will assume that we are
trying to fly a clockwise circle, although the direction of the controller can be easily adjusted by assigning a sign to
the radius and using that as a multiplier for the error terms.

Figure 5 illustrates the problem at hand. We would like the aircraft to be located at a distance R from the center of
predefined circle, while flying tangentially to said circle. In other terms, we would like the error e(t) to be 0 and the
course ψ to be π − η (the π is required here since by convention aircraft course uses North as a datum). Given e(t),
ė(t) and

∫
e(t)dt a simple PID controller can be formulated.

Figure 5. Circle tracking geometry

Assuming that the airplane’s coordinates (xp, yp) is given in the North-East-Down relative to the circle’s origin
(xo, yo), η and e are readily available from simple geometry:

η = atan2(yp, xp), e =
√
xp2 + yp2 −R (10)

It is possible to compute the error derivative ė numerically; however, since we have information about the velocity
(Vx, Vy), it is better to compute analytically by simply differentiating the expression for e which yields:

ė =
xp ẋp + yp ẏp√
xp2 + yp2

=
xp Vx + yp Vy

e+R
(11)

This can be further simplified by realizing that the numerator of the expression above is a dot product. Using some
geometry we can show that:

ė =
~rp · ~Vp
e+R

=
(e+R)Vpcos(ψ + η − π/2)

e+R
= Vp cos(ψ + η − π/2) (12)

It is worth noting that in the steady-state when e = 0 and ψ = π − η we also have ė = 0. Putting all of this together,
we propose the following controller which apart from the integral term, uses data readily available from the estimator:

ψc = π − η + kp atan(e) + kdė+ kI

∫
e dt (13)

However, this controller commands a heading and our inner-loop controllers are wrapped around bank angle φ.
This means that an additional loop from course to bank angle is required. Another PID controller was used:

φc = φss + kp eψ + kd ψ̇ + kI

∫
eψ dt (14)

where eψ = (ψc − ψ(t)) is the error in course ‖ and φss = atan( VgR ) is the steady-state bank angle used as feed-
forward.
‖Note that we need to pay attention to the wrapping of the course angle at 2π, this is easily handled by letting eψ = atan2(sin(eψ), cos(eψ))
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V. Results

A. Simulation Results

1. Circle Tracker Simulation

In order to verify that the controller proposed for tracking a circle works, a simple simulation in Matlab was put in
place. We only simulate the outer-loop controller (i.e. from position to heading) and assume that the inner-loop con-
troller is a perfect coordinated-turn controller. In other words, the commanded bank angle φ is achieved immediately
and the turn rate is given by ψ̇ = g sin(φ)

V .
Figure 6 shows the controller operating with no wind in the simulation and a target radius R=100 m, with different

initial positions and velocities. Both initial positions inside and outside of the circle were simulated (with radii R/2 and
1.5 × R respectively). The positions are spaced by 60o around the circle, but in all cases the initial course is towards
the North. This allows us to see how the controller behaves for various combinations of initial positions and velocities.

Figure 6. Tracking a circle with R=100m from various initial positions. Initial course is to the North and there is no wind.

Figure 7 shows the details of the simulation of the controller for one initial condition. As can be seen in the
commanded bank angle, a maximum of ±40o was imposed.

Figure 7. Trajectory, heading, position error and bank angle input for tracking a circle with R=100m. Initial course is to the North with no
wind.

We also simulated our controllers with some wind in the JSBSim non-linear simulator, and even adapted them to
use wind information to improve the circle tracking. Estimating wind was relatively straightforward given airspeed
and GPS measurements, especially that we were constantly flying in circles.
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2. Localization Simulation

In addition to the real-world experiments we will describe below, we have conducted extensive evaluations of the
localization system in simulation. In our simulator we collected data from two airplanes flying in formation, with the
chase airplane keeping a distance of two to 15 meters behind the lead airplane. Using the true positions between the
two airplanes we simulated LED locations in a camera image, added Gaussian noise to these locations, and then ran
the above localization algorithm to estimate the pose between the two airplanes.
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Figure 8. Simulated and real camera pose estimation errors of the lead airplane at different distances from the trailing airplane.

The covariance of the noise we added to the LED locations was estimated to match the real system as closely as
possible. Although, as mentioned above, it is difficult to obtain precise accuracies of the camera localization in flight
or at long distances (since we have little information about the ground truth positioning of the airplanes in such cases),
we tested its accuracy at close range using ground truth data from an indoor Phase-space motion capture system. The
errors in these measurements correspond to an error of approximately 3 pixels in the camera display. The blue dots
in Figure 8 show the pose estimation error in simulation, using a standard deviation of 3 pixels in the LED location.
Similarly, the red triangles illustrate the pose reconstruction error for the real system for five known configurations
in the motion capture system. We estimated the standard deviation of three pixels by fitting the resulting errors from
simulation to the collected data.
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Figure 9. Histograms for simulated pose reconstruction error (in meters) in the longitudinal (left), lateral (center), and vertical (right)
directions.

After estimating the noise in this manner we examined the pose reconstruction error for much longer distances in
the simulation alone. While this will naturally be only an approximation to the true camera’s error, for example due
to the fact that LED location errors in the real system will not likely be Gaussian distributed, it still provides a rough
estimate of the errors we would expect. Figure 9 shows histograms of the pose estimation errors for 16000 simulated
data points, with a distance of two to 15 meters between the two aircraft. As expected, the error in the longitudinal
direction is the largest; here, small errors in dot locations, when the lead airplane is far away, can lead to relatively
large estimation errors. Fortunately, however, positioning of the tail aircraft in the lateral and vertical directions is
significantly more important for formation flight, and in these directions the errors are much lower: after applying the
Kalman filer, we obtain a 11.3cm RMSE for the lateral error and 7.9cm RMSE for the vertical error. For example,
these are of the order necessary to see significant fuel savings in formation flight for vehicles of this size. This gives
an initial indication that such camera localization is a promising approach to in-air localization for formation flight.
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B. Experimental Results

So far we have been able to successfully and repeatedly carry autonomous flights with both airplanes. Using GPS only,
we were able to get close enough to have Batman’s LEDs in the field of vision of Joker’s camera. The challenge has
been to get the airplanes to fly repeatable circles despite winds and noisy measurements from the sensors. Moreover,
we have only been able to hold altitude to within 3 m, which is not accurate enough for the close-range formation
task described above. We believe this is caused by the fact that we are relying on GPS alone to estimate altitude and
climb rates. Indeed, GPS altitude accuracy is not very reliable, and it is no surprise that we cannot hold altitude more
accurately.

Regardless, we have been able to realize flights in which the lead airplane remained in the field of vision for over
5 minutes, and were able to collect extensive in-flight data with the camera. Applying the algorithms above, we were
able to localize the lead for this 5 minute time frame for using the in-flight camera data, with results shown in Figure
10, 11, and 13. However, we note that thus far we have not used the localization estimates from the vision system to
control the trailing aircraft, since the complete estimator which fuses these estimates with the GPS data has not been
completely vetted.

Figure 10. View from the camera on the trailing aircraft. The red dots on the lead aircraft are high power LEDs used for relative positioning.

Figure 11. View from the camera with red filter (helps with detecting the LEDs)
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Figure 12. Screenshot of the paparazzi GCS with the groundtracks of the two vehicles

Figure 13. Screenshot of the custom GUI with camera view in the bottom right, filtered image in the bottom left and position estimates in
the top (camera view only available in flight log-replay mode)
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VI. Conclusion

We have taken two RC airplanes and made them capable of flying autonomously. We have collected data which
we used for system identification in order to extract a linear model and synthesize an LQR controller. Using an LQG
based control approach, we were able to control the speed and altitude of the airplanes in order to be able to position
them relatively close to each other using GPS data only.

Real-time localization using the vision data was shown to work both in the lab and in flight. However, due to the
absence of a ground truth measurement system, we are only able to make claims of position accuracy from simulation
results based on noise estimated from collected data. Our conclusion is that for longitudinal separations between 2m
and 15m, it is possible to achieve in-air localization using a camera with errors in the vertical and lateral direction on
the order of 10cm RMSE. This gives at least an initial indication that such camera localization is a promising approach
to in-air localization for formation flight.

A. Future Work

The system we present here is admittedly experimental, and there are many additions that could increase the robustness
of the overall system. For instance, we could include a tighter coupling of attitude and position estimation. Indeed,
we relied on the attitude estimation of the IMU which was not properly fused with position and velocity information
from GPS and other sensors. The same thing can be said about altitude estimation, where barometric pressure could be
used to reduce noise from gps measurements. In the future, the proposed Extended Kalman Filter could be augmented
to include the raw IMU sensors, or a system with full Attitude Heading Reference System (AHRS) could be used
instead. Additionally, all of our controllers were designed by linearizing the system around a single trim point. It
would be beneficial in the future to implement gain scheduling based on dynamic pressure at different velocities and
air densities.
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