
LEARNING AND CONTROL WITH INACCURATE MODELS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

J. Zico Kolter

August 2010

Abstract

A key challenge in applying model-based Reinforcement Learning and optimal control

methods to complex dynamical systems, such as those arising in many robotics tasks,

is the difficulty of obtaining an accurate model of the system. These algorithms

perform very well when they are given or can learn an accurate dynamics model, but

often times it is very challenging to build an accurate model by any means: effects

such as hidden or incomplete state, dynamic or unknown system elements, and other

effects, can render the modeling task very difficult.

This work presents methods for dealing with such situations, by proposing algo-

rithms that can achieve good performance on control tasks even using only inaccu-

rate models of the system. In particular, we present three algorithmic contributions

in this work that exploit inaccurate system models in different ways: we present an

approximate policy gradient method, based on an approximation we call the Signed

Derivative, that can perform well provided only that the sign of certain model deriva-

tive terms are known; we present a method for using a distribution over possible

inaccurate models to identify a linear subspace of control policies that perform well

in all models, then learn a member of this subspace on the real system; finally, we

propose an algorithm for integrating previously observed trajectories with inaccurate

models in a probabilistic manner, achieving better performance than is possible with

either element alone.

In addition to these algorithmic contributions, a central focus of this thesis is

the application of these methods to challenging robotic domains, extending the state

of the art. The methods have enabled a quadruped robot to cross a wide variety

of challenging terrain, using a combination of slow static walking, dynamic trotting

iv

gaits, and dynamic jumping maneuvers. We also apply these methods to a full-sized

autonomous car, where they enable it to execute a “powerslide” into a narrow parking

spot, one of the most challenging maneuvers demonstrated on an autonomous car.

Both these domains represent highly challenging robotics tasks where the dynamical

system is difficult to model, and our methods demonstrate that we can attain excellent

performance on these tasks even without an accurate model of the system.

v

To my mom, Janine, my dad, Roberto, and my wife, KD.

vi

Acknowledgments

This thesis has been the product of a long and close collaboration with my advisor,

Andrew Ng. I am hugely indebted to Andrew for all the help, guidance, and insight

he has provided to me over the years. While I couldn’t succinctly describe all the

ways in which he has helped shaped my academic mindset, the way he approaches

new research problems, how he analyzes theoretical questions, and his logical mindset

on “diagnostics” for machine learning methods have all become an integral part of

how I look at any new problems. In addition, his enthusiasm and happiness to talk

about any new ideas have constantly made it a joy to work with him.

I want to thank the other members of my reading committee for their help with

this work. Daphne Koller, in addition to providing a great many detailed comments

on this work, has for the past year been an amazing source of knowledge and insight.

Often times upon hearing just briefly about an algorithm or idea I had been working

on, she would immediately have an idea for building upon it in a new and interesting

way. Sebastian Thrun has been a constant source of inspiration, and in all my talks

with him always exudes a genuine excitement about how the work we do in AI can

have a real effect on the world.

I also want to thank the other members of my orals committee: Stephen Boyd and

Ilan Kroo. Stephen’s classes have profoundly shaped the way I approach almost every

new problem I look at, and his enthusiasm for talking about any new application or

algorithmic idea is truly inspirational. I only met Ilan later in my PhD program, and

his knowledge and intuition about aerodynamics, as well as his enthusiam, has been

wonderful to experience.

Recently I have begun several projects relating to energy issues, and Carrie Armel

vii

has been extremely helpful in getting me involved in this research. Her passion and

excitement about getting new people involved in this work has made me feel welcome

and even more excited about this new area of research.

Looking back, I owe a large debt of gratitude to Mark Maloof, my undergraduate

advisor who first got me interested in machine learning research. Mark’s enthusiasm

and commitment to clear and engaging presentation of machine learning work is one

of the main reasons why I got so excited about this field in the first place.

I want to thank my officemates, Morgan Quigley and Honglak Lee, as well as the

members of our frequent lunch groups, Adam Coates and Pieter Abbeel. Numerous

times I’ve been grateful to have Honglak around for commiseration during late night

paper writing sessions. Talking with Morgan and Adam about various potential robot

platforms and algorithms, both plausible and wildly implausible versions, has been

one of the most fun parts of the past five years; it will also be a huge loss not to

be able to constantly bug Morgan with questions about any and every mechanical

or engineering issue I’d run into. Working with Pieter was another highlight of my

earlier PhD experience; his excitement in talking about new algorithms and ideas has

always been an inspiration.

I’m very grateful for having had the chance to work with and talk to many of the

other members of Andrew’s group, both past and present. I want to thank Ashutosh

Saxena, Tom Do, Rion Snow, Rajat Raina, Olga Russakovsky, Quoc Le, Andrew

Maas, Andrew Saxe, and Jiquan Ngiam.

Thanks to all those who I have collaborated with on various research and pa-

pers: Sam Schreiber, Mike Rodgers, Danny Jachowski, Yi Gu, Charles DuHadway,

Youngjun Kim, Christian Plagemann, and David Jackson. In the last year, I have

also begun working with Zouhair Mahboubi, Geoff Bower, and Tao Wang. Their

constant excitement in our projects, even when it means getting to Gates at 6:30 AM

to go fly RC airplanes, has made this work a true joy, even when we were all sleep

deprived.

During the two quarters that I TA’d Andrew’s machine learning class I had the

pleasure of working with a number of other students: Sam Ieong, Erick Delage,

Haidong Wang, Catie Chang (both times!), Tom Do, Dan Ramage, Joseph Koo and

viii

Paul Baumstarck. Sam and Tom in particular were invaluable in taking a huge part

of the workload, and made even the experience of grading problem sets until two in

the morning seem less of a burden.

Finally, moving away from the academic sphere, I can’t imagine getting through

the past several years without the support of family and friends. To my mom, Janine,

my dad, Roberto, and my sister, Amanda, I want to thank you for all your support

and encouragement.

Lastly, and most importantly, I want to thank my companion throughout my

time at Stanford and beyond, my wife KD. Your unconditional love and support has

sustained me through this all, your strength has inspired me, and I will be forever

grateful for all that you do. Thank you from the bottom on my heart.

ix

Contents

Abstract iv

Acknowledgments vii

1 Introduction 1

1.1 Model-based Reinforcement Learning, Optimal Control, Robust and

Adaptive Control . 2

1.2 Overview of Contributions . 3

1.3 Outline of Thesis . 5

1.4 First Published Appearances of Contributions 7

2 Background 9

2.1 Dynamical Systems and Optimal Control 9

2.1.1 States and Controls . 9

2.1.2 First-order Markov Models . 10

2.1.3 Stochastic models . 11

2.1.4 Control policies . 13

2.1.5 Optimal Control . 14

2.1.6 Markov Decision Processes . 16

2.2 Multi-variate Calculus . 16

2.2.1 The Gradient . 16

2.2.2 The Jacobian . 17

2.3 Policy Gradient Methods . 18

2.3.1 Known deterministic model 19

x

2.3.2 Known stochastic model . 20

2.3.3 Unknown deterministic or stochastic model 21

2.4 Linear Quadratic Regulator Methods 23

2.4.1 Linear Dynamics and Quadratic Cost 24

2.4.2 Non-linear models . 27

2.4.3 Non-linear trajectory stabilization 28

2.4.4 Iterative LQR . 29

2.5 Summary . 31

3 Approximate Policy Gradient via the Signed Derivative 32

3.1 Related Work . 34

3.2 The Signed Derivative Policy Gradient Approximation 37

3.2.1 The Signed Derivative Approximation and Algorithm 38

3.2.2 The Signed Derivative Term 40

3.3 Theoretical Analysis . 43

3.3.1 Overview of the Theoretical Results 45

3.3.2 Formal Results . 47

3.3.3 Proofs of Technical Lemmas 52

3.4 Experimental Results . 54

3.4.1 Simulated Two-Link Arm . 54

3.4.2 Autonomous RC Driving . 59

3.4.3 LittleDog Jumping . 62

3.5 Summary . 66

4 Dimensionality Reduction in Policy Search 68

4.1 Related Work . 69

4.2 Dimensionality Reduction Policy Search 72

4.2.1 Dimensionality Reduction Policy Gradient 75

4.2.2 Least Squares Policy Search 77

4.3 Application to Omnidirectional Path Following 78

4.3.1 A Balancing Policy for Omnidirectional Trotting 79

4.3.2 Policy Search as Least Squares 81

xi

4.3.3 Experimental Setup and Results 82

4.4 Summary . 86

5 Multi-model Control for Mixed Closed-loop/Open-loop Behavior 88

5.1 Related Work . 90

5.2 A Probabilistic Framework for Multiple Model Control 91

5.2.1 LQR with multiple probabilistic models 93

5.2.2 A dynamics model for open-loop trajectories 96

5.2.3 Estimating Variances . 97

5.3 Experiments . 98

5.3.1 Cart-pole Task . 98

5.3.2 Extreme Autonomous Driving 100

5.4 Summary . 104

6 Application to the LittleDog Robot 105

6.1 Introduction to Legged Locomotion 106

6.2 Related Work . 107

6.2.1 Background on legged locomotion 107

6.2.2 The Learning Locomotion program and LittleDog robot 109

6.3 A software architecture for quadruped locomotion 111

6.3.1 Route Planner . 111

6.3.2 Gait Selector . 114

6.3.3 Static Walking Gait . 115

6.3.4 Trot Gait . 118

6.3.5 Specialized Maneuvers . 119

6.3.6 Introduction to Rapid Replanning Methods 120

6.4 Recovery and Stabilization Control 120

6.4.1 Control Elements . 121

6.4.2 Experimental Evaluation . 122

6.5 Motion Planning via Cubic Spline Optimization 124

6.5.1 The Cubic Spline Optimization Algorithm 125

6.5.2 Planning Foot Trajectories . 132

xii

6.5.3 Experimental Evaluation . 136

6.6 Cost Learning via Hierarchical Apprenticeship Learning 138

6.6.1 The Hierarchical Apprenticeship Learning Algorithm 139

6.6.2 Application to Cost Map Learning 143

6.6.3 Experimental Evaluation . 145

6.7 Learning Locomotion Program Results 147

6.8 Summary . 150

7 Conclusion 152

xiii

List of Tables

4.1 Performance of the different centering methods on each of the three

benchmark paths, averaged over 5 runs, with 95% confidence intervals. 85

5.1 Total average cost at the last time step for different algorithms on the

cart-pole task. 99

6.1 The four terrains used for evaluation of recovery and stabilization pro-

cedures. 123

6.2 Success probabilities out of 20 runs across different terrains for the

controller with and without recovery, body stabilization, and closed-

loop foot placement. 124

6.3 The training and testing terrains used to evaluate the cubic spline

trajectory planning on LittleDog.. 137

6.4 Performance of cubic spline optimization on the two quadruped ter-

rains. Terms include 95% confidence intervals where applicable. . . . 137

6.5 The training and testing terrains used to evaluate HAL. 145

6.6 Execution times for different constraints on training and testing ter-

rains. Dashes indicate that the robot fell over and did not reach the

goal. 146

6.7 Speeds for Phase II system and terrains. Average speed is based upon

the best two out of three runs. We received no information as to

whether the system based all 3/3 test or only 2/3, but all test passed

at least 2/3 of the runs. 148

xiv

6.8 Speeds and success rates for Phase III system and terrains. Average

speed is based upon best two runs. The first six terrains represent

the “standard” Phase III tests, while the last three represent three

additional optional terrains. The video references in the text shows all

nine terrains. 149

xv

List of Figures

3.1 Two-link pendulum trajectory following task. 56

3.2 Average cost versus time for different policy gradient methods. Costs

are averaged over 20 runs, and shown with 95% confidence intervals. . 56

3.3 Trajectories from initial controller. 57

3.4 Trajectories from controller learned using PGSD. 58

3.5 Average cost versus time for PGSD versus model-based methods. Costs

are averaged over 20 runs, and shown with 95% confidence intervals. . 58

3.6 RC car used for the driving experiments. 59

3.7 Desired trajectory for the autonomous RC driving experiments, with

trajectory for initial controller. 61

3.8 Desired trajectory for the autonomous RC driving experiments, with

typical trajectory learned using PGSD after approximately 20 seconds

of learning. 61

3.9 Average cost versus time for the PGSD algorithm on the RC car task.

Costs are averaged over 10 runs, and shown with 95% confidence intervals. 62

3.10 The desired task for the LittleDog: climb over three large steps. . . . 63

3.11 Overview of the front jump maneuver. 64

3.12 A properly executed jump. 65

4.1 Pictures of the quadruped robot following several paths. 84

4.2 Trajectory and center offsets for the learned controller. 84

xvi

5.1 (left) Trajectory followed by the cart-pole under open-loop control

(middle) LQR control with an inaccurate model and (right) Multi-

model LQR with both the open loop trajectory and inaccurate model. 99

5.2 Average total cost on cart-pole task, versus time. Shaded regions in-

dicate 95% confidence intervals. 100

5.3 Snapshots of the car attempting to slide into the parking spot using

(top) open-loop control, (middle) pure LQR control, and (bottom)

Multi-model LQR control. The desired trajectory in all cases is to

slide in between the cones. 102

5.4 Plots of the desired and actual trajectories followed by the car under

(left) open-loop control, (middle) pure LQR control, and (bottom)

Multi-model LQR control. Bottom plots show a zoomed-in view of the

final location. 103

6.1 The LittleDog robot, designed and built by Boston Dynamics, Inc. . . 109

6.2 Typical quadruped locomotion task: navigate robot over terrain to goal.111

6.3 Hierarchical software architecture for quadruped planner and controller.112

6.4 Overview of route planning element. 113

6.5 Overview of the footstep planning process. 116

6.6 Illustration of kinematic feasibility constraints. (a) Kinematically fea-

sible region for q1 ∈ [−π/2, π/2], q2 ∈ [−2.6, 2.6]. (b) Convex subset of

the feasible region. 129

6.7 Illustration of collision constraints. (a) Initial (infeasible) plan. (b)

Height constraints imposed to avoid collision with obstacle. (c) Re-

sulting optimized cubic spline trajectory. 130

6.8 Foot planning task, and initial trajectory. 132

6.9 Typical example of a foot trajectory generated by the algorithm. The

top figure shows the resulting trajectory in 3D space, while the bottom

shows each component as a function of time. 136

6.10 Typical example of a COG trajectory generated by the algorithm. . . 136

6.11 High-level (route) expert demonstration. 145

xvii

6.12 Low-level (footstep) expert demonstration. 146

6.13 Body and footstep plans for different constraints on the training (left)

and testing (right) terrains: (First/Red) No Learning, (Second/Green)

HAL, (Third/Blue) Path Only, (Fourth/Yellow) Footstep Only. . . . 147

6.14 Prototype system with onboard stereo camera, and snapshots of the

system crossing one of the more difficult terrains, using only onboard

vision. 151

xviii

Chapter 1

Introduction

This work focuses on controlling complex dynamical systems, such as a legged robot

climbing over large obstacles and a full-sized autonomous car sliding sideways over

the ground. In these and many other control tasks a similar theme emerges: the

challenge of creating an accurate model of the system. Many control methodologies

rely on the presence of an accurate model in order to obtain good performance, and

there exists a variety of methods for creating such models; the models can be built

from physical principles or learned from data collected on the real system. But often

times it is very challenging to build an accurate model even using all these methods:

there can be hidden state in the system that is difficult to sense or model, leading to

non-Markovian dynamical effects; there are often properties of the system that are

constantly changing, with no way to know these properties a priori; or the dynamics

of the system may simply be sufficiently complex such that efficient simulation of the

system is not possible. In all these settings it is useful, then, to consider how we

may develop learning and control methods that rely only on inaccurate models of the

system in order to achieve good performance.

1

CHAPTER 1. INTRODUCTION 2

1.1 Model-based Reinforcement Learning, Optimal

Control, Robust and Adaptive Control

Broadly speaking, the fields of model-based Reinforcement Learning (RL) (Sutton

and Barto, 1998) and optimal control (Bertsekas, 2005a,b; Stengel, 1994) provide a

canonical set of methods for controlling dynamical systems.1 While there are numer-

ous different approaches to model-based RL and optimal control (we will describe

the framework as well as some of the more relevant algorithms in much greater de-

tail in Chapter 2) such methods typically work in the following manner. As input,

these algorithms take a dynamical model of the system of interest and a cost function

that specifies what constitutes good or bad behavior, and they then output a control

strategy that attempts to minimize this cost function in the dynamical system. While

the algorithms can work in many different ways, intuitively, we can think of such ap-

proaches as simulating multiple possible experiences in the dynamics model, then

outputting the control strategy that performs best (i.e., minimizes the cost function)

in the model.

There are many things that could potentially go wrong with this approach. For

instance, the cost function may incorrectly capture the desired notion of good behavior

in the system. Alternatively, the reinforcement learning or optimal control algorithm

may fail to minimize the desired criterion. However, in practice we find that for

nearly all cases, for the types of control problems we consider here, the fault lies

in the dynamics model: the resulting controller output by the algorithm typically

performs very well in the dynamical model we provide to the algorithm, but does not

perform well in the real world. Thus, the fundamental issue often is one of model

accuracy: we simply do not have a sufficiently accurate model of the real system to

perform well on the task of interest. Indeed, one of the fundamental challenges in

model-based RL and optimal control is the task of either coming up with suitably

accurate dynamics model, or avoiding the need for an accurate model entirely.

A number of classical control methodologies exist that attempt to remedy the

1Model-based RL and optimal control generally refer to a very similar body of algorithms and
methodologies, so we make no distinction between the two for the purposes of this work.

CHAPTER 1. INTRODUCTION 3

problem described above. Perhaps the simplest method to address the issue of an

inaccurate dynamical system is to attempt to use data from the real system to learn

a better dynamics model; this is the strategy employed by methods such as adaptive

control (Sastry and Bodson, 1994; Astrom and Wittenmark, 1994) or many meth-

ods of system identification (Ljung, 1999). In a similar vein, a great deal of work

in model-based RL focuses on methods for exploring the state space to extent that

guarantee a sufficiently accurate learned dynamics model (Strehl et al., 2009; Kearns

and Singh, 2002); recent work also focuses on the ability to use expert demonstrations

when learning such dynamics models (Abbeel and Ng, 2005). However, the problem

here, which we alluded to previously, is that often times it is still very challenging to

develop an accurate model of the system, even given a large amount of data from the

real system: effects like hidden state/non-Markovian dynamics, or unknown and con-

stantly changing parameters render certain problems unsuitable to such approaches.

This situation, then, motivates the use of inaccurate models in control. Of course,

if we concede the ability to develop an accurate dynamics model of the system of

interest, the question naturally arises as to what, and how, we can learn from such

a model. The classical control methodology that deals most directly with inaccurate

models is the area of robust control (Zhou et al., 1996). Broadly speaking, robust

control deals with scenarios where we do not know the true model of the system,

but where we have some distribution or uncertainty set over possible models, and

the goal is to find a controller that performs well in all these models (or with high

probability given a distribution over possible models). One difficulty of this method

is that, in order to ensure that the controller does indeed perform well in all models,

the result is often a very conservative control law, that in exchange for robustness

does not perform optimally in any of the models in question. There have also been

approaches that combine elements of both adaptive and robust control (Ioannou and

Sun, 1995), where one identifies a system along with uncertainty bounds suitable for

robust control methods, but these methods still inherit the general limitations of both

these approaches.

CHAPTER 1. INTRODUCTION 4

1.2 Overview of Contributions

The work we present in this thesis also deals with the question of how to learn

good control strategies given an inaccurate model of the system, but it does so in

a different manner from the techniques described above. Unlike adaptive control or

system identification, the methods we present here will typically make no efforts to

learn an improved model of the dynamical system. Indeed, we will often use a learned

model as our inaccurate model, so the assumption is that we have exhausted all our

options in terms of building a good model, and now wish to use the model we have to

the best of our abilities. Likewise, our methods differ from robust control in that we

do not seek a control system that performs well in a wide variety of models; rather,

we want a control policy that performs well in just one system: the real system in

the world. Having said this, there are certainly manners in which our work overlaps

with adaptive and robust control techniques, and we will highlight these connections

in the individual chapters. But as a general theme, the task we focus on is as follows:

we want to obtain optimal (or as close to optimal as possible) performance on the

real system, through techniques that exploit an inaccurate dynamics model of the

system.

While most of the chapters in this thesis present algorithmic or theoretical con-

tributions, a key contribution of this work is the application of these algorithms to

real-world problems. Indeed, the examples of a quadruped robot climbing over large

obstacles and a robotic car sliding over gravel, described previously, are real-world

tasks that have motivated many of the algorithms we present here. In particular,

much of the work in this thesis centers around applications to the LittleDog robot

(Murphy et al., 2010), a small quadruped robot intended for negotiating rough ter-

rain. Although we have spent a great deal of time attempting to develop an accurate

simulation model of the robot, we have repeatedly found that it is very difficult to

come up with an accurate simulator of the real robotic system, due to hard-to-model

effects like backlash in the gears and the friction of the robot’s feet and body sliding

over the ground. Thus, many of the techniques we present in this paper, designed

to operate using inaccurate models, were developed precisely for this real-world task

CHAPTER 1. INTRODUCTION 5

of learning and control with this quadruped robot. Using our methods, we achieve

state-of-the-art results in terms of both navigating over large obstacles, and executing

dynamic maneuvers/gaits in the presence of large obstacles.2

Likewise, the previously mentioned task of sliding an autonomous car sideways

over gravel is another real-world task to which we apply these methods. In particular,

Chapter 5 presents a method for using inaccurate models that we apply to the task

of “powersliding” a full-sized autonomous car (“Junior,” Stanford’s entry into the

DARPA Urban Challenge (Montemerlo et al., 2008)) into a narrow parking spot.

Again the challenge that arises in this task is one of model accuracy: effects like

friction of the car’s tires sliding over the gravel are very difficult to model, especially

when we do not sense all the relevant quantities, such as the speed of the individual

tires of the car. Despite this, our methods are able to accurately and repeatedly

slide the car into a narrow target area, representing the state of the art in terms of

accurately controlling a full-sized car in such a maneuver.

1.3 Outline of Thesis

The chapters in this work are organized as follows:

• Chapter 2: Background. Here we present background on reinforcement

learning and optimal control that forms the basis for the algorithms in future

sections. Since RL and optimal control are obviously very broad fields, we

focus here particularly on those elements that we later build upon in our own

algorithms. In particular, after presenting the formal framework of optimal con-

trol, we focus in particular on Policy Gradient and Linear Quadratic Regulator

(LQR) methods as two techniques for solving optimal control tasks.

2Several different institutions have been simultaneously working with the LittleDog platform,
through the Learning Locomotion program, a competitive effort to build the software that enables
this robot to cross challenging terrain. The robot and program will be described much more in
Chapter 6. Here we just claim that the sum total of all this work, including our own, represents
the state of the art in quadruped locomotion, and leave a more detailed detailed description of the
individual strengths and weaknesses of our approach in this later chapter.

CHAPTER 1. INTRODUCTION 6

• Chapter 3: Approximate Policy Gradient via the Signed Derivative.

This chapter looks at one of the fundamental questions that arises when dealing

with learning control policies from inaccurate models: how can an inaccurate

model, unsuitable for directly learning a control policy, still help us obtain good

performance on the system of interest? The criterion we look at in this chapter

states that an inaccurate model can still be used to improve performance when

the signs of certain dominant model derivative terms are correct; this motivates

the development of a highly simplified form of model, which we call the signed

derivative, that only specifies the signs of these dominant derivative terms.

We show, both theoretically and empirically, that policy gradient methods can

exploit such a model to obtain good performance on a system without ever

using an accurate model. We evaluate this approach on a number of tasks,

including a simulated two-link arm, an autonomous RC car, and a quadruped

robot learning to jump up steps.

• Chapter 4: Dimensionality Reduction in Policy Search. This chap-

ter also deals with policy search and policy gradient methods, but exploiting

a different type of inaccuracy. In particular, we assume here that we have a

parametrized dynamics model that is described by some number of free param-

eters, and we have a distribution over these parameters encoding our uncertainty

in the model. However, unlike robust control procedures, which try to find a

single policy that performs well over this entire distribution, we use dimen-

sionality reduction techniques to identify a linear subspace that contains (near)

optimal control laws for models drawn from that distribution. This enables us

to greatly reduce the number of parameters we need to learn for control policies,

and enables us to efficiently learn a policy on the real system, using either the

techniques described in Chapter 3 or via model-free techniques. We demon-

strate the approach on a task of learning fast omni-directional locomotion on a

quadruped.

• Chapter 5: Multi-model Control for Mixed Closed-loop/Open-loop

Behavior. This chapter deals with the question of what happens when there

CHAPTER 1. INTRODUCTION 7

is a dynamical system that we simply cannot model accurately, even in terms

of its dominant derivative signs or a distribution over parameters. In such

a setting it may appear as though there is little chance that we will be able

to control the system as desired; however, a common feature of many control

tasks, even in highly challenging domains, is that they are often remarkably

deterministic over short periods of time. This motivates a control strategy where

we use models to control the system in regions where the model is accurate,

and execute previously observed trajectories “open-loop” in regions where the

model is inaccurate, but where we have observed a previous demonstration that

accomplishes the desired behavior. In this chapter we develop a probabilistic

approach for such a strategy, which smoothly trades off between LQR-based

control and open loop based upon a measure of model variance. We first evaluate

the method on a standard cart-pole benchmark, and then show that it is able

to achieve very good performance on the challenging task of sliding a full-sized

autonomous car into a narrow parking spot.

• Chapter 6: Application to the LittleDog Robot In this chapter we focus

on developing a control system that allows a quadruped robot to quickly and

robustly cross a wide variety of challenging terrain. As mentioned one of the key

challenges that drives our approaches to this problem is that accurately mod-

eling the LittleDog, in particular how its feet will react with different portions

of the terrain, is a highly challenging task. This chapter differs from previous

chapters in that the focuses is largely on the application itself, and we present

a variety of different algorithms that we have developed for this task. We show

that the final system is able to repeatedly cross a wide variety of challenging

terrain, with obstacles as large as the robot’s legs.

CHAPTER 1. INTRODUCTION 8

1.4 First Published Appearances of Contributions

Much of the material here has appeared in previous publications, though in some

chapters substantial portions have also been expanded. The signed derivative algo-

rithm in Chapter 3 first appeared in (Kolter and Ng, 2009a), though the algorithm

description has been greatly expanded upon. Similarly, the dimensionality reduction

for policy gradient method was first published in (Kolter and Ng, 2007), though again

the algorithm has been expanded upon here. Our work on multiple model control for

mixed open-loop and closed-loop behavior, and its application to the an autonomous

sliding parking maneuver in Chapter 5 appears in (Kolter et al., 2010). Finally, the

LittleDog work we present in Chapter 6 encompasses a number of papers: (Kolter

et al., 2008a,b; Kolter and Ng, 2009b).

Chapter 2

Background

In this chapter, we present a basic background on learning and control techniques

that provide the foundation for the later algorithmic chapters. Machine learning and

control are clearly both large fields of research, so we focus here particularly on those

algorithms that we will later build upon in subsequent chapters. In particular, this

chapter will mainly introduce the notation for dynamical systems and the optimal

control framework, and focus on two methods for optimizing controllers based upon a

model: policy-gradient methods and Linear Quadratic Regulator (LQR) based algo-

rithms. For broader introductions to the topics, a number of references are available

(e.g., Bertsekas, 2005a; Sutton and Barto, 1998; Stengel, 1994).

2.1 Dynamical Systems and Optimal Control

2.1.1 States and Controls

Foremost in the technical description of dynamical systems is the notion of a system

state. Although “state” can potentially refer to a number of things, informally, the

state captures those elements of the system that are relevant to its evolution and

control, but which typically are not directly specified by the agent. For instance, for

the quadruped robot, the state of the robot itself may include the 3D position and

orientation of the robot’s center in space, as well as the the joint angles for each of its

9

CHAPTER 2. BACKGROUND 10

legs plus velocities for all these terms; for a car the system state may consist of the

robot’s position, orientation, and steering wheel angle, again plus velocities for these

terms. Throughout this work we will use the notation

s ∈ Rn (2.1)

to denote the state of the system, where n denotes the dimension of the state space.

Often times there is much greater structure than this definition implies (for instance, if

the state space is discrete), but because we want to work with a general representation

for states, we will adopt this notation.

Controls, in contrast, specify those elements, relevant to the evolution of the

system, that the agent can specify directly. For instance, in the quadruped robot, the

controls may correspond to torques on the robot joints; the distinction here is that

while it is not possible for the agent to directly command the state of the system

(we could not, for instance, direct the robot to immediately assume some position or

orientation), it is possible to directly command control torques to the robot’s joints

(for our sake ignoring the complexity of the joint motors themselves, so we assume

the ability to instantaneously apply a torque to one of the motors). Similarly, for

the car, the controls could correspond to torque applied to the steering wheel, or

throttle/brake commands. We will use the notation

u ∈ Rm (2.2)

to denote controls, where m in the dimension of the control input.

2.1.2 First-order Markov Models

Given these notions of states and controls, we must then determine how the state

evolves as a function of past states and control inputs. Typically this is done either

in a continuous-time manner, by specifying the time derivative ṡ as a function of

past states and controls (thus specifying the evolution of the state as an ordinary

differential equation), or in a discrete-time manner, specifying the next state, denoted

CHAPTER 2. BACKGROUND 11

st+1, as a function of previous states and controls. We will focus on the discrete-time

case in this work, both for intuitive simplicity of computing state updates (computing

the next state from past events will involve just evaluation a function, rather than

numerically integrating a differential equation), and because in practice, we typically

control any actual system at a discrete set of points. However, we note that all the

results presented here can be carried over to the continuous time case with little

difficulty.

In this discrete-time setting, we can formalize the notion of a model as some

function that predicts the next state given past states and control

st+1 = f(st, ut, st−1, ut−1, . . .). (2.3)

However, in practice such general models can be quite cumbersome, as the next state

could depend on a long history of controls. Thus, in this work, as is common in

the control literature, we will restrict our attention to first-order Markov models, a

subset of dynamical systems where the next state depends only on the current state

and control

st+1 = f(st, ut). (2.4)

Despite the simplification, we are actually not loosing a great deal of expressive power

with this limitation; since the state can be augmented to include a history of past

states, any model that depends on a finite number of previous states can controls can

be represented as a first-order Markov model. This framework also helps to clarify

the definition of states and controls; in a first-order Markov model, the state and

control input contain everything needed to determine the next state of the system,

where the controls and states respectively represent those quantities that the agent

can and cannot directly affect.

2.1.3 Stochastic models

There are many times that we want to capture some element of randomness or stochas-

ticity in the model. Indeed, when represented using typical state and control spaces,

CHAPTER 2. BACKGROUND 12

complex systems like quadruped robots and cars exhibit some amount of stochasticity:

even given perfect knowledge of the current state and control, no model could pre-

dict the next state with perfect accuracy, because the next states can actually differ

slightly even for identical initial states and controls. Note that this use of stochastic-

ity is independent of whether there are “real” stochastic effects in the world. What’s

occurring here is that our parametrization of the state is typically incomplete: we

choose some representation of the system’s state so that “most” of the system’s evo-

lution can be described using a first-order Markov model, but there are almost always

certain elements that affect the system evolution to some degree, but that we either

cannot observe or simply don’t want to include in the model. In a car, for instance,

it may be the case that the next state could be affected by small differences in how

much the tire in worn on the different wheels; but we may have no desire to actual

include tire wear on each wheel as a state in our model, because it is both hard to

measure and has a relatively negligible effect the system. Thus, we can instead add

some amount of stochasticity to the system, both to capture any “real” stochasticity

that may exist in the world, but also to account for unmodeled effects due to our

choice of state representation. Indeed, this notion of “stochasticity as a proxy for

model inaccuracy” will be further discussed and exploited in later chapters.

For the present time, however, we simply note that stochasticity is often a desirable

element in models, and we can represent such stochasticity by a model of the form

st+1 = f(st, ut) + ǫt (2.5)

where ǫt denotes some zero-mean noise term, such as a Gaussian random variable

with covariance Σ:

ǫt ∼ N (0,Σ). (2.6)

Indeed, we will often use noise terms of this form, but it is important to note that

(2.5) is a fully general means for representing any stochastic model (assuming we

allow ǫt to depend arbitrarily on the state, control and time), and that (2.6) is a very

specific special case, that is no longer fully general.

CHAPTER 2. BACKGROUND 13

2.1.4 Control policies

A control policy (also referred to simply as a controller) provides a means for choosing

control actions based upon the current state. Formally, we define a policy

π : Rn → Rm (2.7)

simply as a mapping from states to actions. In practice, however, because the state

space can be large and continuous, we typically want to work with some restricted

class of policies.

In this thesis, we will typically work with parametrized policies, where the policy

function is specified by some small set of parameters θ ∈ Rk. We will use the notation

ut = π(st; θ) (2.8)

to denote that, for instance, ut is given by the policy π, evaluated for state st, and

parametrized by θ. One common example of a parametrized policy is a linear policy

where the controls are prescribed as a linear function of the state

π(st; θ) = Kst (2.9)

where K ∈ Rm×n is a matrix of the policy parameters, with θ = {K}. Notice a

subtle distinction here: for notational simplicity in many cases, we will typically use

θ to denote a vector of the policy parameters. However, in the case of linear policies,

we need a matrix to output m controls for n state variables; thus, we use a different

symbol (typically K) to denote this matrix, and use θ to represent a vector containing

all the elements of K. In control terminology, the matrix K is often called the gain

matrix in this setting.

Another common form of policies are those linear in state features. Formally,

π(st; θ) = Kφ(st) (2.10)

where φ : Rn → Rp is a function mapping from states to some p-dimensional feature

CHAPTER 2. BACKGROUND 14

vector, K ∈ Rm×p is again a matrix of parameters, and again θ = {K}. Notice that

this is a completely general policy: because φ can be an arbitrary feature mapping,

we can actually represent any (time independent) parametrized policy in this form.

Finally, as we will see below, there are times where it is actually desirable to use

stochastic control policies. As with the dynamics model, we can for example define a

stochastic policy by adding a zero-mean noise term to the output of a deterministic

policy

π(st; θ) = Kφ(st) + νt (2.11)

where νt ∼ N (0,Λ). Unlike the dynamics model, stochastic policies are often viewed

as an undesirable element, introducing artificial noise into the system where none

existed before. Thus, as we will show shortly, while stochastic policies can be useful

for learning methods, one often removes this stochasticity when applying the final

policy on the real system.

2.1.5 Optimal Control

Finally, in order to determine how to choose a policy that can control some dynamical

system, it is necessary to specify what constitutes “good” behavior in this system. The

typical method for doing this is through a cost function, that specifies the “badness”

of a given state (and possibly control). We formally define cost functions as mappings

from states and controls to a real number:

C : Rn × Rm → R. (2.12)

The goal of a control policy in the optimal control framework is then to minimize

the expected sum of costs over some time horizon H. Formally, we define the value

function for a policy π and state s starting at time t, denoted Jπt (s) (also called the

cost-to-go function) as the sum of expected costs, starting at time t, in state s, and

acting according to policy π

Jπt (s) = E

[

H
∑

t′=t

C(st′ , π(st′))

∣

∣

∣

∣

st′+1 = f(st′ , π(st′)) + ǫt′ , st = s

]

. (2.13)

CHAPTER 2. BACKGROUND 15

When we use the notation Jπ, the subscript t = 0 is implied, and we will typically

only use a subscript when defining a value function for some other time horizon. The

value function Jπt also satisfies a recurrence relation know as Bellman’s equation

Jπt (s) = C(s, π(s)) + E
[

Jπt+1(f(s, π(s)) + ǫ)
]

(2.14)

and with JπH(s) = C(s, π(s)). Intuitively, this relation says that the value of a state

is equal to the cost of that state, plus the expected value of the next state, following

policy π.

The optimal policy, denoted π⋆, is the policy that minimizes the value function

(2.13) over all possible policies. The value of function of this optimal policy, denoted

J⋆, obeys its own version of Bellman’s equation, sometimes referred to as Bellman’s

optimality equation to distinguish it from the case above:

J⋆t (s) = min
u

{

C(s, u) + E
[

J⋆t+1(f(s, u) + ǫ)
]}

. (2.15)

In certain situations, such as discrete state spaces, or linear systems with quadratic

costs (a case that we will discuss at length below), it is possible to use the Bellman

optimality equation to analytically solve for the optimal value function, which in turn

gives us the optimal policy at time t

π⋆t (s) = argmin
u

{

C(s, u) + E
[

J⋆t+1(f(s, u) + ǫ)
]}

. (2.16)

In most cases, though, computing an exact solution to Bellman’s optimality equation

is intractable, and so we must resort to approximate methods or methods that only

find locally optimal policies. Indeed, much of the remainder of this chapter will

focus on two methods for finding approximately optimal control laws: policy gradient

approaches, and Linear Quadratic Regulator (LQR) techniques.

CHAPTER 2. BACKGROUND 16

2.1.6 Markov Decision Processes

The learning and control community, and in particular the Reinforcement Learning

community, often uses the machinery of Markov Decision Processes (MDPs) to for-

malize the optimal control framework. Intuitively, an MDP is simply a structure

that contains all the elements described previously in this section: state and con-

trol spaces, a dynamics model (also called transition probabilities), a cost function

(or reward function, which just corresponds to negative cost), a time horizon, and

a distribution over initial states, and a cost function. Formally, using the notation

from this chapter, an MDP is a tuple M = (S, U, P,D,H,C) where S and U are the

state and control spaces; P is a set of transition probabilities given by the dynamics

model, D is a distribution over initial states, H is the time horizon, and C is the cost

function. There are many slightly different formulations for MDPs, such as the those

with a reward function instead of a cost function, or those with an infinite (possibly

discounted) value function instead of the finite time horizon we use above. However,

these are minor differences, and the basic machinery and algorithms for MDPs are

very similar across all the different formulations. Thus, we include this section just

to note the connection, as much other work and many later chapters will use the

MDP formulation specifically. For a more complete introduction to MDPs, see e.g.,

Putterman (2005).

2.2 Multi-variate Calculus

This thesis makes extensive use of calculus in multiple variables. While the actual

calculus we use is actually very simple (almost entirely differential calculus), the no-

tation may be initially confusing, as there are actually a variety of different notations

in use for these functions. Thus here we briefly review some of the notation that we

will use in the remainder of the thesis.

CHAPTER 2. BACKGROUND 17

2.2.1 The Gradient

The gradient of a function is defined for real-valued functions with vector or matrix

inputs f : Rm×n → R. The gradient is a vector (or matrix) of equal size as the

function input, and is defined as

∇Af(A) ∈ Rm×n =









∂f(A)
∂A11

· · · ∂f(A)
∂A1n

...
. . .

...
∂f(A)
∂Am1

· · · ∂f(A)
∂Amn









, (2.17)

i.e., the ijth entry of ∇Af(A) is equal to the derivative of f(A) with respect to the

ijth entry of A.

2.2.2 The Jacobian

The Jacobian of a function is defined for vector-valued functions with vector inputs

f : Rn → Rm. The Jacobian is an m× n matrix, defined as

∂f(x)

∂x
∈ Rm×n =









∂f(x)1
∂x1

· · · ∂f(x)1
∂xn

...
. . .

...
∂f(x)m
∂x1

· · · ∂f(x)m
∂xn









, (2.18)

i.e., the ijth entry of ∂f(x)
∂x

is equal to the the derivative of f(x)i with respect to xj.

Because Jacobians behave much like scalar derivatives, we use the same notation,

but is is important to remember that ∂f(x)
∂x

is a matrix when used for multi-variate

functions and inputs. It is also important to note the subtle difference between the

Jacobian and the gradient: for a real-valued vector function f : Rn → R, the gradient

is the transpose of the Jacobian

∇xf(x) =

(

∂f(x)

∂x

)T

. (2.19)

A useful property of the Jacobian, completely analogous to the scalar case, is the

CHAPTER 2. BACKGROUND 18

chain rule. For functions f : Rk → Rm and g : Rn → Rk,

∂f(g(x))

∂x
=
∂f(y)

∂y

∂g(x)

∂x
, y ≡ g(x) (2.20)

A useful special case of this rule applies when we have f that is explicitly a function

of two vector arguments, f : Rk × Rℓ → Rm, g : Rn → Rk, h : Rn → Rℓ,

∂f(g(x), h(x))

∂x
=
∂f(y, z)

∂y

∂g(x)

∂x
+
∂f(y, z)

∂z

∂h(x)

∂x
, y ≡ g(x), z ≡ h(x). (2.21)

2.3 Policy Gradient Methods

When global optimization of the control policy is intractable, one of the simplest and

most common methods for finding a good policy is via policy gradient techniques.

In this section we use the terminology of parametrized policies as defined above, and

we use J(·; θ) as shorthand for Jπ(·;θ), the value function of the policy parametrized

by θ ∈ Rk. Policy gradient methods use a simple gradient descent rule to find the

parameters that minimize the value function. In particular, if we let

∇θJ(s; θ) ∈ Rk (2.22)

be the gradient of the value function, evaluated as state s, with respect to the pa-

rameters (this quantity itself is known as the policy gradient), then by performing

the simple update

θ ← θ − α∇θJ(s; θ) (2.23)

for a small step-size α ∈ R+, we will adjust θ so as to incrementally improve J(s; θ).

Under certain smoothness conditions, this process will find a locally optimal set of

control parameters. Also note that if we desire a policy that performs well over some

distribution D over states, we can just as easily compute gradients with respect to

J(D; θ) = Es∼D [J(s; θ)] (2.24)

CHAPTER 2. BACKGROUND 19

by using sampling methods, for instance.

The key to policy gradient approaches, of course, is how we compute these gradient

terms ∇θJ(s; θ). This section discusses several methods for doing so in different

scenarios.

2.3.1 Known deterministic model

The most straightforward scenario for computing policy gradients is the case of a

known deterministic model, (2.4). First, note that we can easily compute J(s; θ) by

the procedure

1. Run the policy for H steps: st+1 = f(st, π(st)) for t = 0, . . . , H−1, with s0 = s.

2. Sum the costs: J(s; θ) =
∑H

t=0C(st, π(st)).

Given this (deterministic) method for computing J(s, θ) we can easily compute its

gradient with respect to θ by finite differencing, for example: we simply make minor

adjustments by adding some some small δ to one of the elements of θ, then recompute

the value function and divide by δ:

(∇θJ(s, θ))i ≈
J(s, θ + δei)− J(s, θ)

δ
(2.25)

where ei ∈ Rk denotes the ith unit basis (a vector whose elements are all zero except

for the ith element, which is one).

While finite differencing is useful in its simplicity, if we are able to compute deriva-

tives of the model analytically, then we can also compute the policy gradient analyt-

ically by applying the chain rule (a strategy known as real-time recurrent learning

in the Neural Network community (Williams and Zisper, 1989)). The material here

is more advanced than that in the remainder of this chapter, and is not crucial for

its understanding, but the way in which we derive the equations here will be used in

later chapters as well. To determine an analytical form of the policy gradient, we can

apply the chain rule to see that

∂C(st, ut)

∂st
=
∂C(st, ut)

∂st

∂st
∂θ

+
∂C(st, ut)

∂ut

∂ut
∂st

∂st
∂θ

+
∂C(st, ut)

∂ut

∂ut
∂θ

, (2.26)

CHAPTER 2. BACKGROUND 20

and

∂st+1

∂θ
=
∂f(st, ut)

∂θ
=
∂f(st, ut)

∂st

∂st
∂θ

+
∂f(st, ut)

∂ut

∂ut
∂st

∂st
∂θ

+
∂f(st, ut)

∂ut

∂ut
∂θ

. (2.27)

By also noting that

∇θJ(s; θ) =
H
∑

t=0

∇θC(st, ut) =
H
∑

t=0

(

∂C(st, ut)

∂θ

)T

(2.28)

we can derive a simple algorithm for computing the gradient that maintains the matrix

G = ∂st
∂θ
, uses this term to compute each element of the policy gradient, and updates

this term according to (2.27). Thus, the procedure is as follows:

• Initialize s0 ← s, ∇θJ(s; θ)← 0, G← 0.

• For t = 0, . . . , H − 1,

1. ut ← π(st; θ), st+1 ← f(st, ut)

2. ∇θJ(s; θ)← ∇θJ(s; θ) +GT

(

∂C(st, ut)

∂st
+
∂C(st, ut)

∂ut

∂π(st; θ)

∂st

)T

+

(

∂C(st, ut)

∂ut

∂π(st; θ)

∂θ

)T

3. G←

(

∂f(st, ut)

∂st
+
∂f(st, ut)

∂ut

∂π(st; θ)

∂st

)

G+
∂f(st, ut)

∂ut

∂π(st; θ)

∂θ

2.3.2 Known stochastic model

When the dynamics model of the system is known, but includes a stochastic noise

term as in (2.5), then additional techniques are needed: simply computing the pol-

icy gradient ignoring the noise term will not give an unbiased estimate of the true

gradient. The most common means for computing policy gradients in this domain is

via sampling: we compute the policy gradient (by any of the methods above) using

some fixed ǫ1, . . . , ǫH drawn by random sampling. We repeat this process a number

of times and average all the resulting policy gradients to get our final estimate of

the gradient. This is known as the PEGASUS algorithm (Ng and Jordan, 2000), and

CHAPTER 2. BACKGROUND 21

it can be shown that this procedure produces an unbiased estimate of the gradient,

and furthermore that given a suitable number of samples it will be close to the true

gradient with high probability.

2.3.3 Unknown deterministic or stochastic model

Finally, we note that there are algorithms which can compute an estimate of the

policy gradient even when an explicit model is unknown (but, of course, assuming

we can execute control policies in the system). Because these methods are not the

focus of this thesis, we just introduce the basic ideas here, and leave the numerous

extensions of these methods to the references. However, since this thesis is about

inaccurate models (which are hopefully easy to obtain), the methods presented here

are often the best comparisons to our approaches, as the relevant question is: how

much can it help to have an inaccurate model versus no model at all?

The method presented here is known in the context of Reinforcement Learning

as the REINFORCE, or Episodic REINFORCE algorithm (Williams, 1992), but it is

based on a method known as likelihood ratio gradient estimation (Glynn, 1987). Un-

like the previous approaches, this method and extensions require stochastic policies,

so we will use the notation

p(u|s; θ) (2.29)

to denote the probability density of action u given state s, when executing the policy

parametrized by θ. Typically this takes the form of a deterministic policy plus noise,

as in (2.11).

To simplify the presentation, we will also introduce here the notion of a trajectory,

denoted τ , which is simply a sequence of states and actions

τ = (s0, u0, . . . , sH , uH). (2.30)

We also overload the cost notation, so that

C(τ) ≡
H
∑

t=0

C(st, ut). (2.31)

CHAPTER 2. BACKGROUND 22

Using this notation, notice that the value function can also be written as

J(s; θ) = Eτ [C(τ)] =

∫

p(τ |s0 = s; θ)C(τ)dτ (2.32)

(for the remainder of this section, we will omit the s0 = s qualification, as this will

always be implied).

Given this form of the value function, the policy gradient can be written as

∇θJ(s; θ) = ∇θ

∫

p(τ ; θ)C(τ)dτ

=

∫

p(τ ; θ)

p(τ ; θ)
∇θp(τ ; θ)C(τ)dτ

=

∫

p(τ ; θ)∇θ log p(τ ; θ)C(τ)dτ

= Eτ [∇θ log p(τ ; θ)C(τ)] .

(2.33)

By this “trick” of introducing the gradient of a log term, we can transform the gradient

into an expectation, which we will then approximate using sampling. However, we

must first show how to compute the derivative term ∇θ log p(τ ; θ). Fortunately, this

can be done without the need for an explicit dynamics model, since

∇θ log p(τ ; θ) = ∇θ log

(

H
∏

t=0

p(st+1|st, ut)p(ut|st; θ)

)

=
H
∑

t=0

(∇θ log p(st+1|st, ut) +∇θ log p(ut|st; θ))

=
H
∑

t=0

∇θ log p(ut|st; θ)

(2.34)

where the ∇θ log p(st+1|st, ut) term drops out because it does not depend on θ. Thus,

as claimed above, we see that this term can be computed without an analytical model

of the system. The complete procedure for computing the gradient is as follows, where

we approximate the expectation in (2.33) using M sample trajectories:

• For i = 1, . . . ,M , sample a trajectory τ (i) by starting in state s and executing

CHAPTER 2. BACKGROUND 23

the policy (with parameters θ) for H steps.

• ∇θJ(s; θ) ≈
1

M

M
∑

i=1

(

H
∑

t=0

∇θ log p(u
(i)
t |s

(i)
t ; θ)

)

C(τ (i)).

One requirement of the algorithm, as written, is that we need the ability to “reset”

the system to the same initial state s and perform multiple simulations of the policy.

While this could be avoided by using M = 1, this typically produces a very noisy

estimate of the gradient, which is of limited use for improving the policy. Thus, these

model-free policy gradient methods are typically applied to scenarios where we can

reset the state to the same or very similar initial state. Furthermore, as mentioned

above, the algorithm above is the simplest version of a likelihood ratio policy gra-

dient method; obtaining good performance with such algorithms typically requires

more advanced techniques, such as the selection of an optimal baseline (Greensmith

et al., 2004) (a bias on the cost, which doesn’t change the gradient, but which reduces

the variance of the estimate), and natural gradient methods (Kakade, 2001; Bagnell

and Schneider, 2003; Peters et al., 2005) (a technique that performs steepest descent

updates according to a metric on the trajectory probabilities, rather than the param-

eter space, and which typically results in much faster convergence). However, these

extensions are beyond the scope of this background introduction.

2.4 Linear Quadratic Regulator Methods

Methods based upon linear quadratic regulator (LQR) control form another common

family of algorithms for find locally optimal control laws. In contrast to policy gra-

dient methods, which can be applied to any arbitrary form of parametrized policy,

LQR methods typically output a very specific form of parametrized policy: (possi-

bly time-varying) open-loop controls plus (also possibly time-varying) linear feedback

controllers. LQR control is based upon a special case of continuous state and ac-

tion dynamics and cost, where the solution to Bellman’s optimality equation can be

solved analytically. Thus, we begin our presentation with a discussion of this special

case. For more detailed discussion of Linear Quadratic methods, there are a number

CHAPTER 2. BACKGROUND 24

of available references (e.g. Bertsekas, 2005a; Anderson and Moore, 1989; Stengel,

1994)

2.4.1 Linear Dynamics and Quadratic Cost

We begin by considering the special case of a linear dynamics model

st+1 = Ast + But (2.35)

and a (positive definite) quadratic cost function1

C(s, u) = sTQs+ uTRu, Q ∈ Rn×n � 0, R ∈ Rm×m ≻ 0 (2.36)

i.e., the goal is to maintain the system at the zero state, s = 0, while applying zero

control, u = 0. In this case, we will show that Bellman’s optimality equation admits

a closed form solution, and that the optimal value function is quadratic in the state

J⋆(s) = sTPs (2.37)

for some P ∈ Rn×n � 0. The derivation here is relatively brief: a more detailed

derivation is given in the references above. First note that

J⋆H(s) = min
u

(sTQs+ uTRu) = sTPHs (for PH = Q). (2.38)

Now suppose J⋆t = sTPts for some Pt � 0. Then by Bellman’s optimality equation

we have

J⋆t−1(s) = min
u

(

sTQs+ uTRu+ J⋆t (As+ Bu)
)

= sTQs+min
u

(

uTRu+ (As+ Bu)TPt(As+ Bu)
)

= sTQs+ sTATPtAs+min
u

(

uTRu+ uTBTPtBu+ 2sTATPtBu
)

(2.39)

1Here A � 0 and A ≻ 0 denote positive semidefinite and positive definite matrices respectively.

CHAPTER 2. BACKGROUND 25

The u that minimizes the right hand size is given by

u⋆t = (R + BTPtB)−1BTPtAs (2.40)

and substituting this expression back into (2.39), the value function takes the form

(after some simplification)

J⋆t−1 = sT (Q+ ATPtA− A
TPtB(R + BTPtB)−1BTPtA)s = sTPt−1s, (2.41)

which again is a quadratic form (and, though we don’t prove it here, is also positive

semidefinite). This implies that the optimal policy in this domain is a (time-varying)

linear feedback policy

π⋆t (st) = Ktst, Kt ≡ (R + BTPtB)−1BTPtA. (2.42)

Using the notation of parametrized policies from the preceding section, we would

say that the policy parameters here are a separate gain matrix for each time step

θ = {K1, K2, . . . , KH} with Ki ∈ Rm×n, and the LQR algorithm allows us to find the

globally optimal set of parameters for the case of linear dynamics and quadratic cost.

While the requirement of linear dynamics and quadratic cost may seem overly

restrictive, the algorithm can be extended to certain more general settings while

maintaining global optimality:

• Time-varying dynamics and costs. The algorithm can be easily generalized

to time-varying linear dynamics models and costs:

st+1 = Atst + Btut, Ct(s, u) = sTQts+ uTRtu. (2.43)

We omit the derivation because it is identical to that above, but the resulting

optimal value function and optimal policy have the form

J⋆t (s) = sTPts, π⋆t (s) = (Rt +BT
t PtBt)

−1BT
t PtAts ≡ Kts

Pt−1 = Qt + ATt PtAt − A
T
t PtBt(Rt + BT

t PtBt)
−1BT

t PtAt), PH = QH .
(2.44)

CHAPTER 2. BACKGROUND 26

• Affine systems. We can apply LQR to affine systems

st+1 = Ast + But + a (2.45)

by adding a constant term to the and applying LQR to the augmented system

s̄ =

[

s

1

]

, Ā =

[

A a

0 1

]

, B̄ =

[

B

0

]

, Q̄ =

[

Q 0

0 0

]

, R̄ = R. (2.46)

• Trajectory tracking. We can also express costs that penalize deviation from

a time-varying desired state and control

Ct(s, u) = (s− s⋆t)
TQ(s− s⋆t) + (u− u⋆t)

TR(u− u⋆t). (2.47)

While it is possible to solve this equation by augmenting the state as in the

previous example, this also requires a cost function that has cross-terms that

depend on both the state and control (to account for a term that is linear in

the control input). Instead, using the same method as above it can be shown

that the optimal value function and policy are of the form

J⋆t (s) = sTPts+ 2qTt s+ rt, π⋆t (s) = Ktst + gt

Kt = −(R + BTPtB)−1BTPA, gt = −(R + BTPtB)−1(Bqt −Ru
⋆
t)

Pt−1 = Q+ ATPtA− A
TPtB(R + BTPtB)−1BTPtA, PH = QH

qt−1 = (A+BKt)qt −K
T
t Ru

⋆
t −Qs

⋆
t , qT = −Qs⋆T

rt−1 = rt + u⋆t
TRu⋆t + s⋆t

TQs⋆t − (BT qt −Ru
⋆
t)
T gt, rT = s⋆t

TQs⋆t

(2.48)

• Stochastic models. LQR can also be easily applied to stochastic linear models

of the form

st+1 = Ast + But + ǫt, ǫt ∼ N (0,Σ). (2.49)

In fact, it turns out that the optimal control law for this system with Gaussian

noise is identical to the optimal control law for the system without noise, and

CHAPTER 2. BACKGROUND 27

thus we can solve this setting by the same method as above. Although we

do not prove it formally here, the basic intuition is that, because the noise is

independent of the state and control, it has no impact on the optimal policy;

the only difference in the stochastic setting is that there is an additional term

in the value function, accounting for the additional expected cost due to noise.

Thus, in general we won’t distinguish between the stochastic and deterministic

case for LQR models.

Many other simple extensions to the setting can be solved exactly, and of course

we can combine any of these extensions. However, the constraint of linear (or affine)

models is still a large restriction, and thus in the next section we discuss how these

techniques can be extended (approximately) to non-linear systems.

2.4.2 Non-linear models

Consider a general nonlinear model of the form previously considered

st+1 = f(st, ut) (2.50)

and initially suppose further that s = 0, u = 0, is an equilibrium point of the system

0 = f(0, 0) (2.51)

i.e., starting in state s = 0 and applying control u = 0 keeps the system in state

s = 0 (notice that this holds for the linear dynamical systems described above, so

we are merely making this requirement to keep the parallels to the linear case as

close as possible at first). Again we assume a positive definite quadratic cost function

C(s, u) = sTQs+ uTRu.

To apply LQR to this setting, we linearize the dynamics around this equilibrium

point, equivalent to taking a first-order Taylor expansion of the non-linear system, to

obtain the approximate system matrices

A ≡
∂f(0, 0)

∂s
, B ≡

∂f(0, 0)

∂u
. (2.52)

CHAPTER 2. BACKGROUND 28

We then solve the resulting LQR problem to obtain a controller πt(s) = Kts exactly

in the manner described above. While this controller will no longer be optimal for

the non-linear system, in practice these control laws typically perform very well,

especially when the system begins in a state “close” to the equilibrium point, so

that the linearization does not introduce very much error. Indeed, although the

mathematical analysis is beyond the scope of this material, under suitable conditions

on the dynamics model the resulting controller is guaranteed to stabilize the non-

linear system (bring the system to the desired s = 0, u = 0 state) for some suitable

ellipse around the equilibrium point. Indeed, the quadratic cost function of LQR

methods can generally be thought of as producing policies that stabilizes the system

around some the zero point. For a more detailed explanation of this linearization

procedure and the application of LQR to non-linear systems, see e.g., (Anderson and

Moore, 1989, Ch. 3) and (Stengel, 1994, Ch. 5).

2.4.3 Non-linear trajectory stabilization

The requirement in the preceding section, that we stabilize the system around the

zero state and control, may seem overly restrictive, and indeed the same technique

can be applied to stabilize the system around a trajectory. Given a trajectory of the

form described earlier in this section

τ̄ = (s̄0, ū0, s̄1, ū1, . . . , s̄H , ūH) (2.53)

we consider a quadratic cost function that penalizes deviations from this trajectory

Ct(s, u) = (s− s̄t)
TQ(s− s̄t) + (u− ūt)

TR(u− ūt). (2.54)

We construct a time-varying LQR task by linearizing the dynamics along the trajec-

tory:

At =
∂f(s̄t, ūt)

∂st
, Bt =

∂f(s̄t, ūt)

∂ut
, (2.55)

CHAPTER 2. BACKGROUND 29

and we solve the time-varying LQR task (but with time-invariant Q and R), according

to equation (2.44). The resulting policy will be to apply control

πt(s) = ūt +Kt(s− s̄t). (2.56)

There is a subtle distinction here, but the LQR algorithm we apply here is not the

“trajectory tracking” LQR cost function described above in (2.47); in particular, we

can solve this LQR task using just the normal quadratic equations, without the need

for a linear term in the value function. This is because we are linearizing the non-linear

system around the trajectory τ̄ ; in effect the linearization implies a (time-varying)

linear system in the trajectory error

δst+1 = Atδst +Btδut, Ct(δst, δut) = δsTt Qδst + δuTt Rδut (2.57)

where δst ≡ st− s̄t and δut ≡ ut− ūt denote the deviation from the desired trajectory.

Thus, the final policy specifies the control deviation will be a linear function of the

state deviation, δut = Ktδst, which is equivalent to (2.56) above.

2.4.4 Iterative LQR

Finally, the trajectory stabilization methods described above is still limited in that it

requires a priori knowledge of a realizable trajectory (i.e., both states and the controls

that result in these states in the model). In this last section, we briefly illustrate how

we can iterate LQR techniques to generate a full sequence of open-loop controls, as

well as feedback controllers, that minimize some cost function without an a priori

trajectory. This general strategy goes by many different names, such as iterative

LQR (Li and Todorov, 2005), Gauss-Newton LQR (Boyd, 2003), or sequential lin-

ear quadratic methods (Sideris and Bobrow, 2005). The method is highly related to

the Differential Dynamic Programming (Jacobson and Mayne, 1970) and the succes-

sive sweep method (Dyer and McReynolds, 1970), and largely involves a very minor

simplification of these classical control strategies.

CHAPTER 2. BACKGROUND 30

Suppose we wish to minimize some trajectory tracking cost function

Ct(s, u) = (s− s⋆t)
TQ(s− s⋆t) + uTRu (2.58)

in the nonlinear model st+1 = f(st, ut). To solve this problem, we begin with some

arbitrary sequence of controls ū0, . . . , ūH and execute these controls in the model to

obtain the resulting states s̄0, . . . , s̄H . We then linearize around this trajectory, as

in the previous section but instead solve a time-varying tracking LQR problem with

cost

Ct(δst, δut) = (δst + s̄t − s
⋆
t)
TQ(δst + s̄t − s

⋆
t) + (δut + ūt)

TR(δut + ūt) (2.59)

under the linear approximation of the error dynamics, δst+1 = Atδst+Btδut, described

in the previous section. Intuitively, since ut ≈ ūt + δut and st ≈ s̄t + δst for small

enough δut and δst (i.e., in a region close to the linearization point of the system),

(2.59) closely approximates the cost function of interest (2.58). Thus, adjusting the

controls according to

ūt ← ūt + δut = ūt +Ktδst (2.60)

will result in a new sequence of states and controls s̄0, ū0, . . . , s̄H , ūH that typically

has lower cost than the previous set of controls and states; we then iterate this process

until convergence.

There is, however, the possibility that the algorithm as describe above will not

converge, due to the fact that for large δst or δut, the linearized model may be a poor

approximation of the non-linear model. To overcome this difficulty, we can add an

additional penalty term on δst and δut, to ensure that the resulting controller does

not deviate too far from the linearization — i.e., we add an additional penalty to the

cost function of the form

H
∑

t=0

(

δsTt Q0δst + δuTt R0δut
)

. (2.61)

By including such a term, and using large enough Q0 and R0 matrices such that

CHAPTER 2. BACKGROUND 31

the resulting δst and δut do not deviate too much from the linearization point, we

can guarantee that the algorithm convergences to a locally optimal set of open loop

controls ūt and feedback matrices Kt.

2.5 Summary

This chapter presented a briefly background on reinforcement learning and optimal

control algorithms. We focused specifically on two categories of algorithms that

we will build upon in the subsequent work: policy gradient approaches and linear

quadratic regulator methods.

Chapter 3

Approximate Policy Gradient via

the Signed Derivative

The previous chapter discussed a number of standard methods for optimizing a policy

given a (presumably accurate) model of the system. However, as discussed in the

introduction, the theme of this work is the ability to use inaccurate models to find

good policies. The natural question, then, is how an inaccurate model of the system,

which may be unable to control the system using the methods from the previous

chapter alone, could still allow us to find policies that perform well.

The algorithm we present in this chapter is based upon the fact that, as we will

show shortly, the policy gradient term discussed in the previous chapter can be writ-

ten such that it depends only on certain model derivative terms. The intuition of

our algorithm is that while such derivative terms may be hard to determine precisely

(since we assume that the system is difficult to model), it is often very easy to estimate

the sign of these derivative terms. Furthermore, if we compute an approximate policy

gradient by simply substituting these signs for the derivatives themselves, the result-

ing algorithm works well (both theoretically and empirically) in many situations, and

does not require an accurate model of the system.

Our method requires an additional constraint on the dynamics as well; for tech-

nical reasons that we will discuss in detail shortly, both our theoretical and empirical

32

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 33

analysis focuses on dynamical systems where each state variable is primarily con-

trolled by only one control variable (although a single control can affect multiple

state variables). While most state variables will naturally be affected by all control

inputs to some degree, we consider the scenario where each state variable is merely

primarily affected by one control (i.e., affects of other controls are treated as noise

terms), where we will formalize this notion shortly. The rationale behind this focus

will be discussed later in this chapter, but for the time being, we merely mention that

the algorithm we present here does focus on this restricted class of dynamics models.

To highlight the critical intuition that certain model derivative signs are “easy” to

determine, and to illustrate why settings with the “orthogonal” control inputs men-

tioned above still capture interesting problems, we consider the simple example task

of driving a car along a trajectory. In this setting, the state could be the car’s lateral

deviation from the trajectory, its orientation relative to the trajectory, and its veloc-

ity, the cost could penalize lateral deviation from the trajectory and deviation from

a desired velocity, and the policy could determine steering and throttle and a simple

(e.g., linear) function of the current state or state features. Consider now the rela-

tionship between the car’s lateral deviation from the trajectory and the commanded

steering angle: it may be very difficult to determine the precise relationship between

how a change in steering angle results in a change in lateral deviation (this would

correspond to the derivative of lateral deviation states with respect to the steering

control input). However, the sign of the derivative term in this case is very obvious:

turning more to the left typically results in a lateral deviation that is also more to the

left. Furthermore, it should be apparent that the car driving domain is one where the

above constraint on control inputs and states holds: while the lateral deviation from

the trajectory is affected by both the throttle and the steering angle, it is primarily

affected by the steering angle. While such “obvious” derivative signs, and constraints

on the control inputs, clearly don’t apply to all control tasks, we demonstrate in this

paper that they do apply in many interesting domains, and that when they do ap-

ply, the approximate policy gradient techniques based on these signed derivatives can

perform very well.

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 34

3.1 Related Work

The algorithm we present in this chapter relates most to two threads of research in the

control and optimization communities. The first of these is the focus on the accuracy

of model derivative terms, rather than the predictive accuracy of the model itself.

Recalling the policy gradient and LQR approaches described in the previous chapter,

note that nowhere in the equations for the policy gradient (2.26) – (2.28), or in the

linearization of the LQR model (2.53), does the actual equation of the model itself,

f(st, ut), come into play; rather, these terms depend on the model only through its

derivative terms ∂f(s,u)
∂s

and ∂f(s,u)
∂u

. The only way in which these methods actually use

the model is for simulating the sequence of states s0, . . . , sH given the control inputs

u0, . . . , uH . But if we have the ability to run trials on the real system, then we can

perform this step on the actual system itself, and if only the model derivative terms

are accurate, then we can use the equations above to effectively compute the policy

gradient or run LQR on the real system. This insight has been observed in a number

of different works, such as Jordan and Rumelhart (1992), and recently Abbeel et al.

(2006) provide a theoretical analysis and experimental results on such algorithms.

However, although this insight is quite useful, from a practical standpoint the

requirement of “only” needing accurate derivatives is not a huge gain. In particular,

for the standard model st+1 = f(st, ut),
∂f(s,u)
∂s

contains n2 terms and ∂f(s,u)
∂u

contains

mn terms. The derivative terms will be identical for the model with any added bias

st+1 = f(st, ut) + bt (3.1)

where bt ∈ Rn is a (state and control independent) bias term. Requiring only accurate

derivative, instead of accurate derivative and prediction, means we don’t need to

learn this bias term, but in the general case this only reduces the number of model

parameters needed by n, and it is unclear if there is any better way to learn the

model derivatives than to simply minimize prediction error. Instead, the algorithm

we present here requires that we only know the sign of the dominant derivative terms

(and, in fact, as we will show shortly only the signs of ∂f(s,u)
∂u

and similar terms), a

requirement that can be much easier to satisfy, as argued in the car driving example

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 35

above. Of course, as we will also discuss, the algorithm we present is also more limited

in the situations we can apply it to, so there is certainly a trade-off between the two

approaches.

The second main area of work which we build upon is work within the optimization

community on using sign terms in optimization. The idea here is simple: if we want

to minimize some function f(x), we can take small descent direction steps in the

direction of the gradient’s sign,

x← x− α sign(∇xf(x)) (3.2)

where the sign function defined in the standard way

sign(x) =















−1 x < 0

0 x = 0

1 x > 0

(3.3)

and is applied component-wise to vectors, and where α is some small step size. For

small enough step sizes (and assuming certain continuity requirements), this step

is guaranteed to decrease the objective; this fact can be shown by simply noting

that the sign of the gradient makes a positive inner product with the gradient,

(∇xf(x))
T sign(∇xf(x)) ≥ 0, which is the condition for a valid descent direction

(Boyd and Vandenberg, 2004, pg. 463).

This general technique of using the sign of the gradient term as the update direc-

tion has a long history in optimization, machine learning, and control. One of the

first algorithms to use this method is the so-called sign-sign LMS algorithm (Das-

gupta and Johnson, 1986), a modification of the classical LMS algorithm (Widrow

and Hoff, 1960) (a stochastic algorithm for least-squares minimization), where the

normal gradient update is replaced by the sign of the gradient; an early application

of this technique was used for channel equalization (Lucky, 1966). In this machine

learning community, such sign-update methods have been used extensively within

neural networks (Anderson, 1986), especially in the context of the RPROP algorithm

(Riedmiller and Braun, 1992), which uses the same idea of gradient sign updates, but

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 36

also adds additional machinery to automatically select step size parameters based

on whether the gradient changes sign in successive updates. Indeed, the notion of

gradient sign updates was also discussed briefly in (Jordan and Rumelhart, 1992)

specifically in the context of optimizing control performance.

The way in which our proposed method differs from these past approaches is that,

as we will show shortly, our algorithm does not propose to update the policy parame-

ters via the actual sign of the policy gradient; rather, our method replaces only certain

model derivative terms in the policy gradient with their signs, but includes many other

elements of the gradient which are not signed. Indeed, as we will show, the final ap-

proximate policy gradient produced by our approach does not necessarily share the

same signs as the true policy gradient (although it often does in practice). Thus, we

cannot guarantee that the updates produced by our algorithm are descent directions

of the value function. However, as we will show below, the updates produced by our

approximation are descent directions for a modified version of the value function, and

one which often minimizes the true value function as well. We will of course discuss

these points in greater detail below, but we merely mention this now to highlight the

difference between out approach and standard signed optimization methods. Finally,

we note that while a gradient descent approach that did always have the same signs

as the true gradient term may ultimately have better convergence properties than our

algorithm, computing the signs of the true gradient seems no simpler than computing

the actual gradient (i.e., it requires a model of the system).

Finally, we want to note the connection between the algorithm we propose here and

the field of adaptive control (Sastry and Bodson, 1994; Astrom andWittenmark, 1994)

— in particular the subtopics of Model Reference Adaptive Control (MRAC) and

Self-Tuning Regulators — and Iterative Learning Control (ILC) (Moore, 1999). The

general philosophy of these approaches is similar to our own: they use an error signal

(i.e., between the actual and desired state) to directly adapt the parameters. However,

typical formulations of MRAC or ILC use hand-crafted update rules to modify the

controller, with update gains that are typically chosen by a system designer. From a

high level, though, the signed derivative policy gradient approximation could certainly

be viewed as an instance of MRAC or ILC, with a very particular form for the update

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 37

rule.

3.2 The Signed Derivative Policy Gradient Ap-

proximation

In this section we derive a simple approximate policy gradient method, using the

approximation we call the signed derivative. We want to emphasize that the final form

of the algorithm, shown in Algorithm 1, is quite simple, even though the derivation

is somewhat involved.

To reiterate our domain settings, we assume the (true) system evolves according

to some non-linear, and unknown, model

st+1 = f(st, ut). (3.4)

For simplicity of the presentation we will assume the model is deterministic, but the

methods easily extend to the setting of generating a single sample of the (approximate)

gradient in the stochastic setting. We suppose a parametrized policy π(s; θ) for some

parameters θ ∈ Rk, a cost function C(s, u), and again our goal is to (approximately)

compute the policy gradient ∇θJ(s; θ), which we will use to iteratively improve the

policy parameters.

The signed derivative approximation is based on the following intuition. As we

will show below, is it possible to explicitly write the analytical form of the policy

gradient in a different manner as that presented in the previous chapter, such that

the only terms which depend on the dynamics model are terms of the form

∂st
∂ut′

(3.5)

for t > t′. Writing the gradient in this manner is not particularly useful for analytical

computation, since the exact analytical form of these derivative terms for t ≫ t′ it

itself quite complex. However, these terms provide the critical motivation for the

signed derivative approximation, so it is worth looking at them more closely. These

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 38

Jacobian matrices are n ×m matrices, where the ijth element of ∂st
∂u

t′
indicates how

the ith element of st changes if we made a small adjustment to ut′ , but otherwise

continued to follow the policy parametrized by θ. For instance, when t = t′ + 1, this

term is simply the partial derivative of the model with respect to the controls

∂st′+1

∂ut′
=
∂f(st′ , ut′)

∂ut′
, (3.6)

which corresponds for example to the “B” matrix in the LQR linearization of the

dynamics model. The terms are more complex for t ≫ t′, but the overall intuition

of the terms of the same even for longer time horizons: these terms represent how

past control inputs affect future states. Thus, we can reasonably assume that over

a relatively short time horizon, these terms will be similar to the single-step term,
∂f(s

t′
,u

t′
)

∂u
t′

.

The signed derivative approximation is based on the intuition that while it may

be difficult to know these derivative terms exactly, it is often fairly easy to estimate

their sign. Returning to the above example of driving a car, while it is difficult to

know exactly how turning the wheel will affect future states, we can easily intuit that

turning the steering wheel more to the left results in future states where the lateral

deviation from the trajectory is also more to the left; further, this holds not just for

the immediate next time step as implied by
∂f(s

t′
,u

t′
)

∂u
t′

, but for some sequence of future

time steps as well. The signed derivative approximation, then, simply computes an

approximate policy gradient, where we replace all the Jacobian terms ∂st
∂u

t′
for t > t′

with a single signed matrix S ∈ Rm×n (i.e., a matrix consisting of -1, 0, and 1 entries,

which we will also refer to as the signed derivative), that captures the signs of the

dominant entries of these derivative terms. We will shortly present several examples

of such matrices for a variety of different systems, but we first want to present the

formal derivation and algorithm, as well as highlight the restrictions on these signed

derivative matrices that are needed for the theory.

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 39

3.2.1 The Signed Derivative Approximation and Algorithm

As mentioned in the previous section, we begin the derivation of our algorithm by

expanding the policy gradient term in a manner that removes any dependence on the

model except via terms of the form (3.5). To do this, first note that for a sequence

of states and actions executed according to a policy (s0, u0 = π(s0; θ), . . . , sH , uH =

π(sH ; θ)) st depends on the parameters θ only through the inputs u0, . . . , uH . Thus,

we can apply the chain rule to obtain

∂st
∂θ

=
t−1
∑

t′=0

∂st
∂ut′

∂π(st′ ; θ)

∂θ
. (3.7)

Repeating the derivation from the previous chapter for clarity, we can apply the chain

rule to write the policy gradient as

∂J(s; θ)

∂θ
=

H
∑

t=0

∂C(st, ut)

∂θ

=
H
∑

t=0

(

∂C(st, ut)

∂st

∂st
∂θ

+
∂C(st, ut)

∂ut

∂π(st; θ)

∂st

∂st
∂θ

+
∂C(st, ut)

∂ut

∂π(st; θ)

∂θ

)

≡
H
∑

t=0

(

(qt + rtKt)
∂st
∂θ

+ rtΦt

)

(3.8)

where for ease of notation we use the definitions

qt ≡
∂C(st, ut)

∂st
, rt ≡

∂C(st, ut)

∂ut
, Kt ≡

∂π(st; θ)

∂st
, Φt ≡

∂π(st; θ)

∂θ
(3.9)

(note that because the cost function and policy are known analytically, we can com-

pute these terms analytically as well). Substitution our expansion of ∂st
∂θ
, (3.7), into

(3.8), we obtain

∂J(s; θ)

∂θ
=

H
∑

t=0

(

(qt + rtKt)

(

t−1
∑

t′=0

∂st
∂ut′

Φt

)

+ rtΦt

)

. (3.10)

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 40

Algorithm 1 Policy Gradient with Signed Derivative (PGSD)

Input:
S ∈ Rn×m: signed derivative matrix
H ∈ Z+: horizon
C : Rn × Rm → R: cost function
π : Rn × Rk → Rm: parametrized policy
θ0 ∈ Rk: initial policy parameters
α ∈ R+: learning rate

Repeat until convergence:
1. Initialize policy gradient and feature sum: G← 0, Ψt ← 0.
2. For t = 0, . . . H,
• Observe state st, take action ut = π(st; θ).

• Update policy gradient G← G+ (qt + rtKt)SΨt + rtΦt.

• Update feature sum Ψt+1 ← Ψt + Φt.
3. Update policy parameters: θ ← θ − αGT .

We now introduce the signed derivative approximation into this expression. As

mentioned previously, the signed derivative approximation replaces all derivatives of

the form ∂st
∂u

t′
with a single matrix S ∈ Rn×m, with 1, 0, and -1 entries, that captures

the dominant signs of these derivative terms. Thus, our approximation of the entire

policy gradient term becomes

˜∂J(s; θ)

∂θ
=

H
∑

t=0

((qt + rtKt)SΨt + rtΦt) (3.11)

where we define

Ψt ≡
t−1
∑

t′=0

Φt. (3.12)

The final form of the policy gradient with signed derivative (PGSD) algorithm is

simply to repeatedly compute approximations to the policy gradient using (3.11),

and use these to update the parameters θ. The full method is shown in Algorithm 1.

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 41

3.2.2 The Signed Derivative Term

Before presenting theoretical analysis of the policy gradient with signed derivative

algorithm, we want to focus in greater detail on the signed derivative term itself.

In particular, we will discuss the validity of the assumption that we can reasonably

replace all the derivative terms with a single matrix representing their dominant signs,

and we discuss restrictions on this signed matrix term that manifest themselves in

the later analysis.

We begin by looking more thoroughly at the actual form of the model derivative

terms ∂st
∂u

t′
. For simplicity, we will use the notation

Bt,t′ ≡
∂st
∂ut′

(3.13)

as well as the definition of Kt above and the standard definitions from LQR-based

linearization as described in the previous section

At ≡
∂st+1

∂st
=
∂f(st, ut)

∂st
, Bt ≡

∂st+1

∂ut
=
∂f(st, ut)

∂ut
. (3.14)

Once again applying the chain rule, we can derive the following recurrence relation

for the Bt,t′ matrices

Bt,t′ =
∂st
∂ut′

=
∂f(st−1, ut−1)

∂ut′

=
∂f(st−1, ut−1)

∂st−1

∂st−1

∂ut′
+
∂f(st−1, ut−1)

∂ut−1

∂ut−1

∂st−1

∂st−1

∂ut′

= (At−1 + Bt−1Kt−1)Bt−1,t′

(3.15)

with Bt+1,t = Bt =
∂f(st,ut)
∂ut

. The matrix At−1+Bt−1Kt−1 corresponds to the lineariza-

tion of the closed loop system at time t−1, and a common property of most practical

dynamical systems is that this term is close to the identity matrix.1 Of course, the

1To see this more formally , note that if the dynamics are based for example on a discretization

of the differential equation ṡ = g(s, u), then st+1 ≈ st + ∆tg(st, ut), so At ≈ I + ∆t∂g(st,ut)
∂st

,

Bt ≈ ∆t∂g(st,ut)
∂ut

, and thus if Kt is bounded the At + BtKt term will only differ from the identity
by O(∆t).

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 42

“interesting” elements of the dynamics are precisely how this term differs from the

identity, but the fact that this matrix is close to the identity just corresponds to

the intuition that the state isn’t likely to change widely from one time step to the

next, assuming a relatively small time step. The above recurrence relation simply

establishes that this also holds for the Bt,t′ matrices, and so these terms are likely to

change relatively little between time steps.

Of course, just because the Bt,t′ matrices change little over relatively short time

periods, this does not imply that their signs do not change. In particular, it is very

possible that an element of Bt,′t with low magnitude (relative to the other entries) may

change sign, as even a small deviation from the identity in At +BtKt could multiply

by one of the larger-magnitude entries of Bt,t′ and change the sign of a smaller-

magnitude entry. Thus, as alluded to previously, we actually stipulate that the S

matrix only capture the signs of the dominant entries of the Bt,t′ terms, while lower-

magnitude entries are simply ignored by setting Sij = 0 for such variables. While

we are intentionally imprecise in terms of what we mean by the “dominant” entries,

for many domains it is apparent that some controls exert significantly less effect on

some states than on others. For car driving, for example, we expect the steering

wheel angle to have a large effect on the car’s orientation and lateral deviation from

the trajectory, but less effect on the car’s velocity; of course, in practice the steering

wheel does affect velocity, but the magnitude of this dependence is much less, and so

we don’t represent it in the signed derivative matrix.

Finally, to highlight an additional point about the signed derivative matrices, we

note that in the formal analysis to follow, we will assume that the true derivative

terms Bt,t′ can be expressed in terms of the signed derivative as

Bt,t′ = Dt(S + Et,t′) (3.16)

where S is the signed derivative, Dt is a positive diagonal matrix, and Et,t′ is an

additional error term. Note how this captures the notion of sign-correctness: the

entries of S do not need to have the correct magnitude, because they can be re-scaled

by the Dt matrix; but they do need to have the correct sign, because the diagonal

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 43

matrix Dt has only positive entries, and thus the signs of Bt,t′ (ignoring the error

term) will be the same as the signs of S. Finally, this error term Et,′t accounts for the

fact, mentioned above, that the smaller-magnitude entries of the derivative terms are

ignored in the signed derivative, and so this term accounts for the fact that Bt,t′ will

contain additional, smaller entries that are not captured by the DtS term; however,

we will assume that this matrix has relatively small magnitude.

The above expression also highlights an important limitation to the signed deriva-

tive, at least as it applies to the theoretical guarantees that we will make about the

method. Because we are pre-multiplying S by a diagonal matrix, we can re-scale the

rows of S arbitrarily, but we cannot re-scale the columns of S. Thus, if we have more

than one non-zero entry per row of S (i.e., two controls that affect the same future

state variable), these entries need to have the correct relative magnitudes, and we

would thus need to include fractional entries in the signed derivative unless the two

controls had the same effect on the future state. Fortunately, a common property

of many control domains is that each state is primarily affected by only one of the

control inputs, and thus we do not need to worry about this issue. Returning one last

time to the car driving example, we note that lateral deviation and car orientation are

primarily affected by the steering wheel angle, while velocity is primarily controlled

by the throttle. In contrast, imagine trying to drive a car where both the steering

wheel and throttle controlled some different combinations of the car’s orientation and

velocity; while such a control system is technically “equivalent” to a standard car, it

would take much more work to learn. This suggests, at least anecdotally, that humans

also exploit these orthogonal control effects, and so we can expect many control tasks

to be designed in this way. We also note that while the theory below does require

the assumption (3.16), the algorithm could still be applied to situations with more

than one non-zero entry per row in the signed derivative, though the performance or

analysis in this case remains an open question.

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 44

3.3 Theoretical Analysis

Before presenting a theoretical analysis of situations where the PGSD algorithm is

guaranteed to perform well, we begin by demonstrating why the algorithm may not

perform like typical sign-based gradient optimization techniques. In particular, we

consider the exact form of the policy gradient (3.10), and consider what would happen

if we replaced the ∂st
∂u

t′
terms with their true sign

˜∂J(s; θ)

∂θ
=

H
∑

t=0

(

(qt + rtKt)

(

t−1
∑

t′=0

sign

(

∂st
∂ut′

)

Φt′

)

+ rtΦt

)

. (3.17)

It should be apparent that the signs of this term are not guaranteed to be the same

as the signs of the true gradient ∂J(s;θ)
∂θ

, since it is certainly possible that

sign

(

∑

i

xi

)

6= sign

(

∑

i

sign(xi)

)

. (3.18)

Thus, there are two potential sources of error for the signed derivative policy gradient

approximation: the error in approximating all the derivative sign terms with a single

matrix S, and the error introduced by putting the sign terms within a summation in

the gradient.

Despite these potential sources of error, there is a informal sense in which we might

still expect the method to perform well: when the dominant derivative terms do keep

consistent signs over a trajectory (as we argued that they would above), replacing

the inner terms with their sign still can capture the general descent directions for the

function. Indeed, while the standard practice in sign-based optimization is to take

the sign of the final gradient terms, some algorithms do take signs of intermediate

terms, and these can perform well in practice even if they lack the guarantees of the

standard approaches (Anderson, 1986).

Of course, this informal justification alone is not particularly satisfying, and so

in the remainder of this section we develop guarantees showing that under certain

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 45

assumptions the PGSD algorithm will perform nearly as well as updating the pa-

rameters with the true policy gradient. However, the assumptions needed to make

such guarantees are indeed rather strong, so we do want to allude to the preceding

informal argument as an additional intuitive justification for the approach.

3.3.1 Overview of the Theoretical Results

In this section we present the basic intuition of our theoretical results. Because the

results deal with the convergence properties of the algorithm, and since convergence

properties of any policy gradient method depend on the structure (e.g. convexity

properties) of the cost function itself (a non-convex cost function could imply an

unbounded value function, for instance), we assume for the sake of these results that

the cost function is quadratic, i.e.,

C(s, u) = sTQs+ uTRu. (3.19)

The theory extends without modification to trajectory-dependent cost functions

Ct(s, u) = (s− s⋆t)
TQ(s− s⋆t) + (u− u⋆t)

TR(u− u⋆t), (3.20)

and for general convex cost functions the analysis below extends to the second-order

quadratic expansion of these functions. Note that given these definitions, the qt and

rt terms take the form

qt = sTt Q, rt = uTt R. (3.21)

The basic intuition of the theoretical proof is as follows. Suppose that the true

matrix derivative terms Bt,t′ obey the condition described previously, that Bt,t′ =

Dt(S + Et,t′) for all t′, with ‖Et,t′‖ ≤ ǫ. Then the gradient given by the signed

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 46

derivative approximation is

˜∂J(s; θ)

∂θ
=

H
∑

t=0

((qt + rtKt)SΨt + rtΦt)

=
H
∑

t=0

(

(sTt Q+ uTt RKt)

(

t−1
∑

t′=0

(D−1
t Bt,t′ − Et,t′)Φt

)

+ uTt RΦt

)

=
H
∑

t=0

(

(sTt QD
−1
t + uTt RKtD

−1
t)

(

t−1
∑

t′=0

Bt,t′Ψt

)

+ uTt RΦt

)

+O(ǫ).

(3.22)

This term looks almost like true policy gradient (with an added O(ǫ) term), except

for the presence of the D−1
t terms, which can render the approximation not even a

descent direction of the true value function. However, if for all t we can find a Q̃t � 0

and R̃t � 0 such that

sTt Q̃t = sTt QD
−1
t , and uTt R̃tKt = uTt RKtD

−1
t (3.23)

then the approximate gradient given by the signed derivative at this point is equal

(up to the O(ǫ) term) to the true policy gradient for a different cost function, given

by the Q̃t and R̃t matrices. Classical results (Khatri and Mitra, 1976) show that

positive semidefinite Q̃t and R̃t matrices exist that satisfy these equalities if and only

if2

sTt QD
−1
t st ≥ 0, and uTt RKtD

−1
t K†u ≥ 0. (3.24)

While these conditions often hold in practice, it is difficult to guarantee them a priori,

and it is also difficult to bound the differences between the solutions Q̃t and R̃t and

Q and R. Thus, while this overall procedure provides additional insight into why the

algorithm may perform well, for the precise results below we will make substantially

more restrictive assumptions, and assume that Q is diagonal and that R is zero (i.e.,

the cost function depends only on the state, though we can introduce constraints on

the controls by restricting the allowable controls or regularizing the policy parameters

θ directly). While these may seem to be large restrictions, in practice we almost

2Here the † symbol denotes the Moore-Penrose pseudoinverse.

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 47

always choose Q to be diagonal anyway (populating a full cost matrix Q can be quite

unintuitive), and restrictions on controls by directly penalizing parameters or control

magnitudes are often actually more intuitive than quadratic cost penalties. When Q

is diagonal and R = 0, the above approximate policy gradient takes the much simpler

form
˜∂J(s; θ)

∂θ
=

H
∑

t=0

sTt Q̃t

(

t−1
∑

t′=0

Bt,t′Ψt

)

+O(ǫ) (3.25)

where Q̃t ≡ QD−1
t is naturally also diagonal and positive definite. Thus, the approx-

imate gradient given by the signed derivative is indeed approximating the gradient

of a different cost function. Therefore, we expect the procedure to converge to a

near local optimum of the value function with this modified cost function, and the

only remaining issue to discuss is how this relates to the policy’s performance on the

original (true) cost function.

To understand why optimizing a modified cost function with cost matrix Q̃t =

QD−1
t can still lead to a policy that performs well on the original cost function, we can

consider the extreme case where the policy class is chosen such that we can actually

find a policy that achieves zero total cost. In this case, it doesn’t matter how we scale

the cost function, since minimizing any quadratic function (globally) will also achieve

zero cost. The reason why the different cost matrices come into play is that often times

we cannot achieve zero cost (i.e., we are restricted by virtue of the system dynamics to

a certain subset of allowable state action pairs, and the global optimum is not within

this set) and so the contours of the cost function determine which suboptimal points

look best. This same intuition holds when the policy class can obtain a controller

with merely near-zero cost: in this case, optimizing the modified cost function also

results in a policy with near-zero cost, with an additional scaling factor that may be

as large as κ(diag(D1, . . . , DH)), the condition number of a diagonal matrix formed

from all the diagonal scaling matrix3. In other words, (given all the assumptions

above) if we choose a policy class such that true policy gradient could achieve low

cost, and if the control inputs are reasonably well scaled, then we expect the PGSD

3The conditional number of matrix A is defined as the ratio between the smallest and lowest
singular valueσmax(A)/σmin(A).

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 48

algorithm to perform well.

3.3.2 Formal Results

The following theorem formalizes the intuition we described in the previous section.

For the purposes of the proof, we assume that the dynamics are deterministic and

that the initial state s0 is fixed, and does not depend on the policy (this would be

the case, for instance, if the control task was episodic, and the system was reset to an

initial state before each trial). Although the assumption of deterministic dynamics

may seem quite restrictive, this is mainly done so that we can work with the simpler

notation of deterministic gradient descent methods, rather than stochastic gradient

descent methods, which would be required for stochastic settings. The results can be

extended to the stochastic setting, as originally published in Kolter and Ng (2009a),

but the extension requires a great deal of additional machinery, and adds little to the

actual intuition of the approach.

The theorem statement to follow requires a number of technical assumptions,

which we list here.

Assumption 1. As described above, the true gradients of the system dynamics are

related to the signed derivative by

Bt,t′ = Dt(S + Et,t′), ‖Et,t′‖ ≤ ǫ. (3.26)

Assumption 2. The dynamics function f : Rn × Rm → R is deterministic, and the

initial state s0 is fixed and independent of the policy π.

Assumption 3. The modified value function

J̃(s; θ) = E

[

H
∑

t=0

sTt QtD
−1
t st

∣

∣s0 = s, π(·; θ)

]

(3.27)

has a Lipschitz continuous gradient4 with Lipschitz constant K (this property will

4A function f has Lipschitz continuous gradient, with Lipschitz constant K, if ‖∇f(x1) −
∇f(x2)‖ ≤ K‖x1 − x2‖ for all x in the domain of f .

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 49

hold, for example, if the dynamics and policy also have Lipschitz continuous gradients

by the fact that compositions of Lipschitz continuous functions are also Lipschitz

continuous). Furthermore, the gradient step size α satisfies

0 < α <
2

9K
. (3.28)

Given these assumptions, we now present the main theorem.

Theorem 1. Under the assumptions above, the PGSD algorithm will converge to

some region that is close to a local optimum of the modified value function (3.27),

i.e.,

‖∇θJ̃(s, θ)‖ ≤ O(ǫ). (3.29)

Furthermore, if (global) optimization of the true value function would result in η-

optimal policy parameters — i.e., J(θ⋆) ≤ η — then (global) optimization of the

PGSD objective will result in a solution θ̃ that is an order η-optimal solution

J(θ̃) ≤ κ(D)η. (3.30)

where κ(D) denotes the condition number of the diagonal matrix

D = diag(D1, D2, . . . , DT). (3.31)

Before turning to the proof of the theorem, we want to address one element in its

statement that may seem odd. In particular, the theorem first states that the PGSD

algorithm converges to a near local optimum of a modified cost function, then claims

that under suitable conditions a global optimum of this modified cost function will

be close to the global optimum of the true value function. Since both the modified

and true value functions are non-convex, we don’t expect to be able to find global

optima of either of these functions in general. However, the theorem merely shows

the expected behavior that optimizing one function also tends to minimize the other:

the same fact would hold for a local optimum of the value functions if we additionally

assume that both gradient procedures (gradient descent on the true value function

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 50

versus the modified value function) were restricted to the same convex region, but

since non-convexity could cause the two gradient descent procedure to converge to

different convex regions the above is the strongest statement we can make without

additional assumptions.

Our proof uses two lemmas (proved in the next section) regarding the convergence

and solutions of optimization procedures. Recall from the discussion above that under

suitable assumptions, the signed derivative approximate gradient is equal to a gradi-

ent of a different function, plus a bounded error term. The following lemma shows

that optimizing a function using gradient descent plus an error term converges to an

approximate (local) optimum. This is a fairly intuitive result, and for simplicity we

focus here on minimizing a deterministic function with Lipschitz continuous gradient.

The result is a straightforward extension of well-known results for the minimization of

function with Lipschitz continuous derivatives (Armijo, 1966). The result generalizes

to more complex situations, such as stochastic gradient descent methods or different

rules for stepsize selection, but these convergence results require much more machin-

ery and assumptions, and don’t add significantly to the actual intuition of the PGSD

algorithm.

Lemma 2. Suppose f : Rn → R is bounded below and has Lipschitz continuous

derivative with Lipschitz constant K, and we employ the approximate gradient descent

procedure

xt+1 ← xt − αgt, ‖gt −∇f(xt)‖ ≤ ǫ. (3.32)

Then for constant step size 0 < α < 2
9L
, as t→∞, xt converges to a region where

‖∇f(xt)‖ ≤ 2ǫ. (3.33)

The second lemma is a general statement about the optimization of quadratic

functions. Namely, it states that if we globally optimize some positive semidefinite

quadratic function f1(x) = xTQ1x over an arbitrary (possibly non-convex) set C, then

the solution will also be close to the globally optimal solution of another positive

semidefinite quadratic function f2 = xTQ2x over the same set. The difference in the

solutions depends on how close to the solution is to the zero point, and a ratio of

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 51

certain eigenvalue terms. This captures the following intuition. Since the zero point

x = 0 is the globally optimal unconstrained minimum for both functions, if 0 ∈ C,

then the solutions will coincide. If 0 6∈ C, however, then the global optimum of f1 over

C can differ from the globally optimal solution to f2, but this difference is bounded

by 1) how close the optimal point is to the zero point, and 2) a particular ratio of the

eigenvalues of the two quadratic forms.

Lemma 3. Consider two positive definite quadratic functions f1, f2 : R
n → R, defined

by

f1(x) = xTP1x, f2(x) = xTP2x, P1, P2 � 0. (3.34)

Let C ⊆ Rn be some arbitrary (and possibly non-convex) subset of Rn, and consider

the solutions of the global optimization problems

x⋆1 = argmin
x∈C

f1(x), x
⋆
2 = argmin

x∈C
f2(x). (3.35)

Then

f1(x
⋆
2) ≤

λmax(P
−1
1 P2)

λmin(P
−1
1 P2)

f1(x
⋆
1). (3.36)

Given these two lemmas, the proof of Theorem 1 is straightforward.

Proof. (of Theorem 1). First note that from (3.22),

˜∂J(s; θ)

∂θ
=

H
∑

t=0

sTt Q

(

t−1
∑

t′=0

(D−1
t Bt,t′ − Et,t′)

)

Φt

=
H
∑

t=0

sTt QD
−1
t

(

t−1
∑

t′=0

Bt,t′

)

Φt −
H
∑

t=0

sTt Q

(

t−1
∑

t′=0

Et,t′

)

Φt

≤
∂J̃(s, θ)

∂θ
+

H
∑

t=0

‖st‖‖Q‖

(

t−1
∑

t′=0

‖Et,t′‖

)

‖Φt‖

≤
∂J̃(s, θ)

∂θ
+K1ǫ

(3.37)

where we bound the second term using the sub-multiplicative property of matrix

norms and by repeated application of the triangle inequality. Thus, given the as-

sumptions above, PGSD satisfies the conditions of Lemma 2, and we can guarantee

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 52

that it converges near to a local optimum, as desired.

The second claim of the theorem follows directly from Lemma 3, by noting that

the true and modified cost function are quadratic in the states with respective cost

matrices

Q = diag(Q, . . . , Q) (T times) , Q̃ = diag(Q̃1, . . . Q̃T). (3.38)

Thus, applying Lemma 3 we have that optimizing the modified cost function leads to

some factor times the optimal solution for the true cost function, where the factor is

given by
λmax(Q

−1Q̃)

λmin(Q−1Q̃)
=
λmax(Q̃Q

−1)

λmin(Q̃Q−1)
=
λmax(D

−1)

λmin(D−1)
= κ(D) (3.39)

as desired, where we can exchange the order of multiplication because both Q and Q̃

are diagonal.

3.3.3 Proofs of Technical Lemmas

Proof. (of Lemma 2) By the mean value theorem,

f(xt+1)− f(xt) = (xt+1 − xt)
T∇f(x̃t) (3.40)

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 53

for some x̃t on the line segment connecting xt and xt+1. Since under our assumptions,

xt+1 − xt = −α(∇f(xt) + e) with ‖e‖ ≤ ǫ,

f(xt+1)− f(xt) = −α(∇f(xt) + e)T∇f(x̃t)

= −α(∇f(xt) + e)T (∇f(xt)−∇f(xt) +∇f(x̃t))

= −α(∇f(xt) + e)T∇f(xt) +−α(∇f(xt) + e)T (∇f(x̃t)−∇f(xt))

≤ −α‖∇f(xt)‖
2 + α‖e‖‖∇f(xt)‖+ α‖∇f(xt) + e‖‖∇f(x̃t)−∇f(xt)‖

≤ −α‖∇f(xt)‖
2 + α‖e‖‖∇f(xt)‖+ α‖∇f(xt) + e‖K‖x̃t − xt‖

≤ −α‖∇f(xt)‖
2 + α‖e‖‖∇f(xt)‖+ α‖∇f(xt) + e‖K‖xt+1 − xt‖

≤ −α‖∇f(xt)‖
2 + α‖e‖‖∇f(xt)‖+ α‖∇f(xt) + e‖αK‖∇f(xt) + e‖

= −α‖∇f(xt)‖
2 + α‖e‖‖∇f(xt)‖+ α2K‖∇f(xt) + e‖2

= −(α− α2K)‖∇f(xt)‖
2 + (α + 2α2K)‖∇f(xt)‖‖e‖+ α2K‖e‖2

≤ −(α− α2K)‖∇f(xt)‖
2 + (α + 2α2K)‖∇f(xt)‖ǫ+ α2Kǫ2.

(3.41)

Now suppose ‖∇f(xt)‖ ≥ 2ǫ. Then

f(xt+1)− f(xt) ≤ −(α− α
2K)‖∇f(xt)‖

2 +
α + 2α2K

2
‖∇f(xt)‖

2 +
α2K

4
‖∇f(xt)‖

2

=

(

−1

2
α +

9K

4
α2

)

‖∇f(xt)‖
2.

(3.42)

Since for α > 0,
−1

2
α +

9K

4
α2 < 0⇐⇒ α <

2

9K
(3.43)

then by our assumption that 0 < α < 2
9K

, at each iteration of gradient descent we

have

f(xt+1) ≤ f(xt)− δ‖∇f(xt)‖
2 (3.44)

for some δ > 0 independent of xt. Thus, for ‖∇f(xt)‖ ≥ 2ǫ, the objective function

must decrease by at least 4δǫ2 at each iteration. Since the function f is bounded

below, this can only happen a finite number of times, implying that as t → ∞, xt

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 54

must converge to a region where ‖∇f(xt)‖ ≤ 2ǫ.

Proof. (of Lemma 3) Consider the set C0 = {x : x ∈ C, f2(x) ≤ f2(x
⋆
1)}. Clearly x⋆2

is a member of this set, so we therefore have

f1(x
⋆
2) ≤ max

x∈C0
f1(x) ≤ max

f2(x)≤f2(x⋆1)
f1(x) ≡ max

xTP2x≤f2(x⋆1)
xTP1x. (3.45)

By a standard variational formulation of the generalized eigenvalue problem ?, this

term can be bounded as

max
xTP2x≤f2(x⋆1)

xTP1x ≤ λmax(P
−1
2 P1)f2(x

⋆
1). (3.46)

Dividing the previous equations by f1(x
⋆
1) and again applying the variational formu-

lation of the generalized eigenvalue problem

f1(x
⋆
2)

f1(x⋆1)
≤ λmax(P

−1
2 P1)

f2(x
⋆
1)

f1(x⋆1)

≤ λmax(P
−1
2 P1)max

x

xTP2x

xTP1x

≤ λmax(P
−1
2 P1)λmax(P

−1
1 P2).

(3.47)

Since λmax(A
−1) = 1/λmin(A), the lemma follows.

3.4 Experimental Results

3.4.1 Simulated Two-Link Arm

While we will present experiments on real systems shortly, we begin our experimental

analysis by presenting an evaluation of our proposed method on a simulated two-link

arm, in order to rigorously compare to previous policy gradient approaches, and to

provide a readily available implementation of our approach. Code for the all the

results in this section is available at http://cs.stanford.edu/~kolter/rss09sd.

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 55

We emphasize that the purpose of this section is to specifically compare PGSD with

other policy gradient approaches: the control task itself is fairly straightforward, and

many other approaches such as adaptive control or iterative learning control could

also be applied, though this is beyond the scope of this work.

The two-link pendulum is a well-known control task in robotics and control. The

system, shown in Figure 3.1 consists of two planar links; the state consists of the joint

angles and velocities of both joints and the control specifies a torque at each of the

joints

st =













q1

q2

q̇1

q̇2













, ut =

[

τ1

τ2

]

(3.48)

The equations of motion can be easily derived from Lagrangian dynamics, and we

introduce stochasticity to the system by adding Gaussian noise to the torques before

integrating the equations of motion. The task we consider here, also shown in the

figure, is to move the end effector along some desired trajectory. When the model of

the system is known, it is fairly easy to apply classical control methodologies such

as inverse dynamics or LQR to find an optimal controller, but of course we don’t

provide this model to PGSD or other comparable algorithms. We feel that this is

a particularly demonstrative example for the Signed Derivative algorithm, since it

is well-known that there are cross terms that cause all joints to be affected by all

the control inputs — for instance, a common (more challenging) task is to swing

the pendulum upright and balance by applying torques only to the elbow — yet

we claim that the Signed Derivative approximation is still reasonable, since joints

are primarily affected by their own control. In particular, since we reason that each

torque primarily affects both the joint angle and joint velocity of that state, the signed

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 56

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.1: Two-link pendulum trajectory following task.

derivative matrix for this task is given by

S =













1 0

0 1

1 0

0 1













. (3.49)

The cost function for this domain penalizes deviations from the desired joint angles

Ct(s, u) = (q1 − q
⋆
1,t)

2 + (q2 − q
⋆
2,t)

2 (3.50)

(we transform the trajectory to joint space via inverse kinematics), and we use a time

horizon of H = 5. Note that this doesn’t mean that the controller only needs to

follow the trajectory for 5 steps, but rather that at each time the controller should

ideally act optimally with respect to a receding horizon of H = 5; since the cost

function itself “guides” the arm along the trajectory, such a horizon is suitable. We

use a linear control policy ut = θTφ(st, t) where φ(st, t) ∈ R7 contains:

1. Deviations from desired joint angles, q1,2 − q
⋆
1,2

2. Deviations from desired joint velocities, q̇1,2 − q̇
⋆
1,2

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 57

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 2000 4000 6000 8000 10000

C
os

t

Timestep

PGSD
REINFORCE (w/ resets)

REINFORCE

Figure 3.2: Average cost versus time for different policy gradient methods. Costs are
averaged over 20 runs, and shown with 95% confidence intervals.

3. Desired joint accelerations q̈⋆1,2

4. A term equal to sin(2πt/ttotal) where ttotal is total time for the complete trajec-

tory (this was added to account for a visible periodic pattern in the controls).

This leads to a total of 14 parameters for the policy (7 for each different control

input). For algorithms that require a stochastic policy, we added Gaussian noise to

the parameters: ut = (θ + ǫt)
Tφ(st, t), (ǫt)ij ∼ N (0, σ).

Figure 3.2 compares the performance versus time of PGSD, and a well-known pol-

icy gradient RL algorithm, the REINFORCE algorithm.5 All free parameters of the

learning algorithms (gradient step sizes, policy noise, number of episodes) were hand-

optimized to give that fastest convergence that didn’t cause any divergence issues. As

the figure shows, PGSD drastically outperform the other methods, converging much

faster to a low-cost policy. This improvement is especially notable given that the RE-

INFORCE algorithm is actually given an advantage: since the task we’re considering

5We intentionally scaled the parameters of this control task to be the same order of magnitude,
so more advanced techniques such as natural gradients(Kakade, 2001; Peters and Schaal, 2006)
didn’t improve performance significantly. In preliminary experiments we also evaluated a variety of
finite difference and weight perturbation methods, but didn’t notice a substantial improvement over
REINFORCE for this task.

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 58

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5 0 0.5 1

y

x

Desired Position
Initial PD Controller

Figure 3.3: Trajectories from initial controller.

is not episodic (at least not at the time-scale of the horizon), episodic algorithms

don’t immediately apply, and so we instead allow the algorithm the ability to reset

to previous states observed along the trajectory. The REINFORCE without resets in

the figure does not have such an advantage, but also performs much worse. Figures

3.3 and 3.4 show trajectory achieved by the initial controller (used to initialize all the

learning algorithms), and the controller learned by the PGSD algorithm after 2000

time steps (4 times through the trajectory).

We also compare, in Figure 3.5, the performance of the PGSD algorithm, policy

gradient using the true gradient from the model, and an optimal LQR controller.

Not surprisingly, the LQR controller performs best: this controller is built by lin-

earizing around the (known) dynamics at each operating point, then computing a

series of non-stationary policies for each point (in total, the LQR controller has 9000

parameters). However, using only 14 parameters, the true policy gradient and PGSD

algorithm are able to obtain a controller that performs relatively close to this full

LQR controller. Furthermore, the most important result is that the learning curve

for PGSD is virtually indistinguishable from the true policy gradient learning curve;

despite the rather crude approximation made by the signed derivative, this resulting

algorithm performs just as well on this task, and requires no model of the system

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 59

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5 0 0.5 1

y

x

Desired Position
PGSD Policy

Figure 3.4: Trajectories from controller learned using PGSD.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 400 800 1200 1600 2000

C
os

t

Timestep

True Gradient (from model)
Optimal LQR controller

PGSD

Figure 3.5: Average cost versus time for PGSD versus model-based methods. Costs
are averaged over 20 runs, and shown with 95% confidence intervals.

(and therefore also less computation time, since there is no need for time-consuming

finite difference computations).

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 60

Figure 3.6: RC car used for the driving experiments.

3.4.2 Autonomous RC Driving

In this section we apply the PGSD algorithm to the task of learning to drive an

autonomous RC car along a desired trajectory. Figure 3.6 shows the car, a Tamiya

TRF415, which is about 40cm long and 20cm wide. A pattern of LED lights is at-

tached to the car, and tracked by an external PhaseSpace motion capture system for

pose estimation. All processing is done on a workstation PC, with controls transmit-

ted to the car at 50hz.

The simplest representation of the car’s state is as six dimensional vector represent-

ing the 2D position x, y, the orientation θ, and the time derivatives ẋ, ẏ, θ̇. However,

a more natural representation for the signed derivative approach is to represent the

car’s state relative to some desired trajectory — here the trajectory is specified as a

continuous spline that gives the desired state as a function of time. In this alternate

representation, the state consists of the longitudinal, lateral, and angular deviation

(and their derivatives) from the desired trajectory. The control is two dimensional,

consisting of a commanded throttle and steering angle. Thus, the signed derivative

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 61

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

x

Desired Position
Initial PD Controller

Figure 3.7: Desired trajectory for the autonomous RC driving experiments, with
trajectory for initial controller.

is a 6× 2 matrix, given by

S =

























1 0

0 1

0 1

1 0

0 1

0 1

























(3.51)

We use the same form of linear controller as in the previous sections, but where

φ(s, t) now contains 1) the full state (represented as the deviation terms), 3) the

desired velocities, relative to the car frame, 3) the deviations for a target state 0.5

seconds in the future and 4) a constant term. Some of the θ parameters are forced to

be zero (so that, for instance, the throttle doesn’t depend on the lateral deviation),

for a total of 16 parameters in the policy. The cost function penalizes the longitudi-

nal, lateral, and angular deviation, any control outside a specified valid range, and

control that changes more that some amount between two time steps (to minimize

oscillations). We used a time horizon of H = 25.

Figures 3.7 and 3.8 show the control task we consider: driving the car in an

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 62

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

x

Desired Position
PGSD Policy

Figure 3.8: Desired trajectory for the autonomous RC driving experiments, with
typical trajectory learned using PGSD after approximately 20 seconds of learning.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50 60

C
os

t

Time (seconds)

PGSD

Figure 3.9: Average cost versus time for the PGSD algorithm on the RC car task.
Costs are averaged over 10 runs, and shown with 95% confidence intervals.

irregular figure-eight pattern at varying speeds (2.0 m/s along the larger loop, 1.5 m/s

along the smaller loop). The figure also shows the trajectory followed by an initial

controller: while the initial controller follows the overall pattern of the trajectory, it

clearly does not perform very well. Figure 3.9 shows the learning curve of the PGSD

algorithm. As the figure shows, PGSD is able to very quickly — within an average

of 20 seconds, about 3 times around the trajectory — obtain a policy that performs

far better than the initial controller. We show a typical trajectory from one of these

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 63

Figure 3.10: The desired task for the LittleDog: climb over three large steps.

learned controllers in Figure 3.8. The learned policies do not perform flawlessly —

the car still sometimes veers off the desired path — but we feel this is largely due

to the limited policy class itself; to perform better, one might need more complex,

time-varying policies, to capture the fact that the car needs to behave differently at

different points along the path. Nonetheless, PGSD converges to a very reasonable

policy — in fact, better than any we were able to hand tune in the same policy class

— in just 20 seconds of learning.

3.4.3 LittleDog Jumping

In this section we present results on applying PGSD to the task of “jumping” the

front legs of a quadruped robot up a large step, as shown in Figure 3.10 The LittleDog

robot, which we use for this task, will be described in much more detail in Chapter

6, but here we briefly describe the jumping task and the challenges involved.

The goal of the front leg jump maneuver is to quickly and simultaneously lift

both front legs onto a step or over a gap. “Jumping” is perhaps a misnomer for the

action, since the robot does not actually have the power to force its front legs off the

ground from a typical standing position. Rather, the strategy we employ is to shift

the robot’s center of gravity (COG) backwards until the front legs become unloaded

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 64

Figure 3.11: Overview of the front jump maneuver.

and the robot is falling backwards. At this point, we quickly shift the COG forward

again, and raise the front legs. If the maneuver executes as planned, then this will

lift the front legs off the ground, and move them simultaneously to a new location by

the time the robot falls forward, as shown in Figure 3.11. A mosaic of the real robot

performing a jump is shown in Figure 3.12.

Due to the nature of the LittleDog, this is a delicate maneuver: shifting the COG

not far enough or too far can either fail to unload the robot’s front legs or cause the

robot to flip backward, respectively. Because this is an extremely fast transition, we

have been unable to develop a typical stabilizing controller: by the time we receive

the necessary sensory data from the robot, it would have already entered into one

of these failure modes, and lacks the control authority to recover. Furthermore, the

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 65

Figure 3.12: A properly executed jump.

correct amount to shift the COG depends on very small changes to the initial state

of the robot. While ensuring a successful jump could be done via precise modeling

of the robot, or a “calibration” procedure that would put the robot into a known

state (such strategies were employed in (Byl et al., 2008) to achieve a similar jump),

our goal was to develop a single policy that could execute such a jump immediately

from a variety of different initial states. To accomplish this task, we parametrize the

jumping maneuver as a function of features of the robot’s initial state, and apply

the PGSD algorithm to learn a policy for shifting the robot’s COG based upon these

features.

Although the full state space for the LittleDog is 36 dimensional, we don’t need to

take into account the complete state. Rather, we have found through experimentation

that the correct amount to shift the COG backwards depends mainly on five features,

so the policy we employ determines the amount to shift back as linear function of: 1)

the current shift of the COG, 2) the forward velocity of the dog and 3) the initial pitch

of the dog, 4) the rotational velocity around the pitch axis, and 5) a constant term;

intuitively, these feature provide a natural description of the robot’s longitudinal

state, and thus are the primary elements relevant for jumping forward. Since there

is only one control input (how far back to shift) and one state that is relevant to the

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 66

success of the jump (the resulting pitch of the robot), the signed derivative in this

case is just the singleton matrix S = 1, indicating that shifting the robot further back

makes it pitch more.

Recall that the success or failure of the jump can be quantified by how much the

robot pitches. Letting β⋆ denote the “optimal” pitch angle of the jump letting β

denote the amount that the robot did pitch. We use the cost function that depends

on the absolute error between the desired and actual pitch,

C(s) = |β − β⋆|, (3.52)

so that ∂C(s)
∂s

= 1 if β > β⋆ and ∂C(s)
∂s

= −1 if β < β⋆ — i.e., the gradient is just the

direction in which we should adjust our control. When H = 1, the PGSD update

then takes on the very simple form:

θ ←















θ − αφ(s) robot didn’t clear step

θ jump succeeded

θ + αφ(s) robot flipped backwards

(3.53)

Despite the simplicity of this update rule, it works remarkably well in practice.

We evaluated this PGSD variant on the LittleDog robot, attempting to climb the

three steps as shown in Figure 3.10. After 28 failures (either flipping backwards or

failing to clear the step), the robot successfully jumped all three steps for the first

time. After 59 failures, the learning process had converged on a sufficiently accurate

maneuver: the robot succeeded in immediately climbing all three steps for 13 out of

the next 20 trials (and failures mostly involved failing to clear the step, where the

robot would then retry the jump and typically succeed). This is far better than any

policy we had been able to code by hand. A video of the learning process on the dog

is available at http://ai.stanford.edu/~kolter/ijrr09ld/.

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 67

3.5 Summary

In this chapter, we have presented the policy gradient with signed derivative (PGSD)

method, an approximate policy gradient algorithm that can be used to optimize a

policy’s performance without an accurate model of the system. The algorithm exploits

the fact that in many control tasks, the sign of certain model derivative terms (relating

how control inputs affect future states) are obvious, and many control tasks further

have the structure that each state is primarily affected by only one control. In such

settings, we have shown, both theoretically and empirically, that the PGSD algorithm

can achieve very good performance. In particular, we evaluated the algorithm and a

number of other policy gradient approaches (including those which have knowledge

of the true model) on a two-link arm benchmark task, and demonstrated that on

this task the PGSD algorithm greatly improves upon model free approaches and

indeed performs as well as a policy gradient algorithm that is given the true model of

the system. We additionally demonstrated the approach on two real-world domains:

driving an RC car along a fixed route, and the challenging task of learning to jump

up stairs with a quadruped robot.

While the PGSD algorithm can perform well on many domains, we emphasize that

the algorithm is not applicable to all tasks. In particular, the algorithm exploits the

fact that certain derivative signs are obvious (and fixed over time). While this is the

case for many control tasks, there are also many domains where this is not the case.

For instance, consider the two-link arm example considered in the chapter, but where

only the second joint is actuated; this is the well-known “acrobot” domain, a task

studied a great deal in Reinforcement Learning (Sutton and Barto, 1998). While this

domain can still be controlled, the control input (torque applied to the second joint),

no longer affects all the states in an “obvious” manner; in particular, the control input

affects the first joint in a manner that depends on the other states of the system, and

the sign of this relationship actually changes in different parts of the state space. Thus,

the PGSD algorithm would not be applicable to such a domain. Furthermore, there

are many domains where state variables are largely affected by more than one control.

While we mentioned briefly that the PGSD algorithm could potentially be applied to

CHAPTER 3. POLICY GRADIENT VIA THE SIGNED DERIVATIVE 68

such domains, the, both our theoretical and empirical analysis in this chapter does

focus on the situation where this constraint holds. Thus, further analysis would be

needed before we could make any performance claims about the PGSD algorithm in

domains where this “orthogonality” of the control inputs does not hold.

Chapter 4

Dimensionality Reduction in Policy

Search

In the previous chapter we explored how we can use inaccurate models within a

policy search setting. However, we did not previously consider the actual size of the

parameter vector θ, and in general a policy with many parameters is significantly

harder to learn on real systems, regardless of the method we use, due to noise and the

amount of data needed to accurately learn a large number of parameters; just running

enough trajectories to gather sufficient data for this task is often impractical on the

real system. In contrast, learning such high-dimensional policies is often possible in

a model of the system (where there is potentially less noise, and we can simulate as

much data as we would like), but here the inaccuracy of model is again a problem:

because we would now use the model to actually simulate trajectories in the system,

we need the model to be accurate in a predictive sense.

The main idea that we present in this chapter is to use an inaccurate model

to identify a low-dimensional subspace of policy parameters, which can effectively

decrease the number of parameters we need to learn on the real system. The intuition

is that by considering a large set of different inaccurate models, we can identify a

subspace of policy parameters that perform well in all these models, and then search

only within this smaller subspace on the real system (which then typically requires

less data).

69

CHAPTER 4. DIMENSIONALITY REDUCTION IN POLICY SEARCH 70

The question remains as to how we generate these several different inaccurate

models for use in the dimensionality reduction task. In practice, dynamics models

are typically themselves parameterized by many different free parameters, which we

will denote ψ to distinguish from the policy parameters θ; these could be, for example,

mass parameters of the physical bodies, friction parameters, torque magnitudes, etc.

Thus, a natural way to generate a large number of inaccurate models is to consider

a distribution over these parameters and sample from the distribution to generate

some number of different inaccurate models. Furthermore, if the model of the true

system is known to a certain degree, but has additional unknown elements (such as

a robot with known dynamics carrying an object with unknown weight), then we can

of course only consider the distribution over these unknown parameters, and fix the

known model parameters.

In this chapter we present the basic algorithm for learning a reduced subspace of

controllers from a distribution over inaccurate models. We first present the algorithm

in its generic form as a policy gradient approach, but we will also specifically consider

the special case where the policy search procedure can be solved analytically via a

least-squares problem. In this case we show that we can find the globally optimal

reduced subspace using a dimensionality reduction algorithm known as Reduced Rank

Regression (RRR) (Reinsel and Velu, 1998). Finally, we apply the method to the task

of learning an omnidirectional trotting policy for a quadruped robot: a control law

that is able to move the robot in any direction while turning in any manner. The

full policy in this domain has almost 100 parameters, but by applying our method

we can exploit an inaccurate model to learn a reduced policy class with only four

parameters, which still works well on the real system.

4.1 Related Work

The work in this chapter relates to a number of areas from both machine learning

and reinforcement learning, most notably the areas of transfer learning, specifically

applied to reinforcement learning domains, and dimensionality reduction applied to

control.

CHAPTER 4. DIMENSIONALITY REDUCTION IN POLICY SEARCH 71

Transfer learning, broadly speaking, is a subfield of machine learning that focuses

on the question of how learning in one domain can improve learning in another.

Transfer learning methods have been applied to a number of reinforcement learning

tasks: see e.g., (Taylor and Stone, 2009) for a survey of several approaches. The

particular sub-area of transfer learning that relates most to the approach we present

here is multi-task learning (Thrun, 1996; Caruana, 1997), a setting where a learning

algorithm is presented with several different learning problems, and where each task

has a different optimal solution but similar structure; in this setting, the goal is

typically to use the previous tasks to learn some meta-structure of the tasks in general

that can be used to speed up learning on a new task. The method we propose can

certainly be viewed as an instance of multi-task learning (we learn policy classes in

the different sampled models to improve our performance on the new task: learning

a policy on the real system), though it does differ from most standard formulations

of multi-task learning slightly the multiple tasks are constructed automatically and

we do not ultimately care about performance on most of the tasks except insofar

as it helps us learn the one task we care about — i.e., we don’t care how well the

policies perform in the inaccurate models, just how well the final controller performs

on the real system. This idea of creating artificial “auxiliary problems” in multi-task

learning has also been explored in (Ando and Zhang, 2005), but this was applied

specifically to the task of semi-supervised learning, rather than the control domains

we consider. Similarly, the work of Argyriou et al. (2006, 2007) bears a great deal

of resemblance to the strategies we present here: like our algorithm, their work looks

at extracting a feature subspace in the multi-task learning setting. However, the

authors focus specifically on sparse feature constructions that can be expressed as

convex optimization problems, which differs from our focus on rank constraints. More

broadly, however, again their work focuses on a supervised learning setting rather than

the control setting we consider here.

In addition to the survey described above, multi-task learning for reinforcement

learning and control tasks has received a great deal of interest in recent years. These

algorithms typically consider a setting where the agent interacts with a number of

different related MDPs,M1, . . .MN , and the goal of the algorithm is to use experience

CHAPTER 4. DIMENSIONALITY REDUCTION IN POLICY SEARCH 72

in past MDPs to improve performance when interacting with a new MDP; this is very

similar to our setup, with the caveat again being that we do not care about perfor-

mance of the method on any domain other than the real system. Methods for these

settings differ in terms of what information they store to facilitate faster learning:

(Tanaka and Yamamura, 2003; Konidaris and Barto, 2006) store value functions from

past domains, and use these in different ways to speed up learning on a new task;

(Mehta et al., 2008) assume identical transition distributions but different rewards

across tasks, which enables them to transfer the reward-independent value function

parameters; (Wilson et al., 2007) use a hierarchical Bayesian approach to learn an

informative prior over MDP parameters themselves; (Taylor et al., 2007) use hand-

coded functions that map state-action value functions from one task to state-action

value function on another task. Our algorithm differs from these approaches in that

it transfers policy class information between the different tasks, finding a subspace

of control parameters that span good policies across all tasks. Perhaps most similar

to our method is the method of (Li et al., 2009), who also transfer a form of policy

parameters between tasks; however, their work explicitly considers a particular form

of policy for partially observable (POMDP) domains, and the details of the approach

are quite different from those we present here.

Our work also relates broadly to approaches for dimensionality reduction, specif-

ically in control settings. Dimensionality reduction as a whole is a very broad topic,

see e.g. (Fodor, 2002) for a survey, but in recent years there have been a number

of applications of these methods to control tasks. In particular, there has been a

great deal of work in recent years on dimensionality reduction for learning suitable

bases for value function approximation, using Graph Laplacian methods in particular

(Mahadevan and Maggioni, 2007). Also related in work on finding low-dimensional

representation of belief state in POMDPs (Roy et al., 2005). Our work is similar in

spirit to these approaches, but notably differs in that we are specifically looking for

a low dimensional representation of the policy class.

Finally, as mentioned in the introduction, the notion of considering a distribution

over possible models bears a great deal of similarity to robust control techniques (Zhou

et al., 1996). The difference in our approach, though, is that we are not seeking a

CHAPTER 4. DIMENSIONALITY REDUCTION IN POLICY SEARCH 73

single control strategy that performs well in all domains. Rather, we are seeking a

small subspace of control strategies, such that, in expectation, when we sample a

dynamics model from our distribution, we can find a near-optimal controller for that

model within the subspace.

4.2 Dimensionality Reduction Policy Search

Here we present our general method for (linear) dimensionality reduction in policy

search algorithms. We first present the generic algorithm for a dimensionality reduc-

tion procedure in policy search; the presentation of the algorithm here is quite simple,

but it also involves a non-trivial optimization problem. We then present progressively

more specialized versions of the algorithm: a general policy gradient approach, and

a globally optimal version that can be applied when the policy search task can be

framed as a least squares problem.

We begin by formalizing the notion of parameterized dynamics models that we

briefly described above. Let ψ ∈ Rℓ be a set of real-valued parameters that describe

the dynamics model f : Rn × Rm × Rℓ → Rn. We use the notation

st+1 = f(st, ut;ψ) (4.1)

to denote the dynamics model, evaluated at state st and control ut, and parameterized

by ψ. In reality most simulation models we will ever encounter will be of this form,

so it is not a significant additional requirement that we assume a model of this type.

Of course, the real system itself cannot be described in this manner, as there is no

obviously notion of “model parameters” in the real world, but simulated models are

typically of this form.

We also assume some distribution D over these model parameters. Naturally a

large question to answer for our method is how we may come up with this distribution,

because for a suitably broad distribution over models, there may be no coherent

structure within the resulting policies — consider, for instance, a linear model st+1 =

Ast+But where we have high uncertainty over all entries of A and B; in such a setting

CHAPTER 4. DIMENSIONALITY REDUCTION IN POLICY SEARCH 74

there would be no discernible structure in the optimal LQR gains K. However, we

have found in practice that there is often a relatively small subset of model parameters

over which we have a large amount of uncertainty. In physics simulators, for instance,

it can often be fairly easy to obtain an accurate model of robot masses, link lengths,

etc, but properties like friction and mass distribution within the rigid bodies can be

much harder to model; thus, we would expect to put large uncertainty over these

difficult-to-model parameters, and little to no uncertainty over the easy-to-model

parameters.

Given this distribution, we sample N different sets of parameters from the distri-

bution D,

ψ(1), . . . , ψ(N) ∼ D. (4.2)

We denote the value function for the the ith model as J (i)(s; θ),

J (i)(s; θ) = E

[

H
∑

t=0

C(st, ut)
∣

∣s0 = s, st+1 = f(st, π(st; θ);ψ
(i))

]

. (4.3)

Note that while we assume different dynamics models for each sample, we suppose

here that the cost function is the same for all models; if there is some reason to prefer

a distribution over cost functions, the extension is straightforward.

Our goal now is to find θ(1), . . . , θ(N) that minimize these N different value func-

tions. Optimizing these directly would simply be equivalent to solving N different

policy search tasks, but we want to add the additional constraint that all the policy

parameters lie is some low dimensional subspace of the entire set of policy parameters.

In order to enforce this constraint, we form the design matrix

Θ ∈ Rk×N ≡
[

θ(1) · · · θ(N)
]

. (4.4)

The constraint that the θ’s all lie in a low dimensional linear subspace of dimension

p, is then equivalent to the constraint that rank(Θ) = p. Thus our dimensionality

CHAPTER 4. DIMENSIONALITY REDUCTION IN POLICY SEARCH 75

reduction policy search task can be stated generally as the optimization problem

min
Θ≡[θ(1)···θ(N)]

N
∑

i=1

J (i)(s; θ(i))

s.t. rank(Θ) = p.

(4.5)

Note that the constraint that rank(Θ) = p is equivalent to the constraint that Θ = UV

for some U ∈ Rk×p and V ∈ Rp×N with the assumption being that p≪ k, so that we

are reducing the dimension of the policy class significantly. Using this factorization,

and the notation V = [v(1) · · · v(N)], we see that

θ(i) = Uv(i) (4.6)

so we can interpret the factorization in the following manner: the U matrix corre-

sponds to a set of p “basis functions” (linear combinations of different policy param-

eters) that are shared across all the tasks, while the v(i) vectors correspond to the

linear coefficients of the ith policy. Using this terminology, we can phrase our opti-

mization problem in a slightly more general way, in terms of the actual distribution

D rather than a set of samples drawn from the distribution

min
U

Eψ∼D

[

min
v
J(s;Uv, ψ)

]

(4.7)

where J(s; θ, ψ) denotes the value function for policy parameters θ and model parame-

ters ψ. This is a very intuitive formulation of the goal of our dimensionality reduction

procedure: we want to minimize over all possible linear subspaces, such that when

we perform policy search within that linear subspace on a randomly sampled model,

we get good performance.

Before describing a specialization of this algorithm, we make a few observations.

First, the rank constraint in the optimization problem (4.5) is non-convex and so

even if the original policy search procedure was globally solvable, this would evidently

raise the possibility of new local optima in this dimensionality reduction policy search

task. Equivalently, the factorization is (4.7) would be non-convex jointly in U and v.

CHAPTER 4. DIMENSIONALITY REDUCTION IN POLICY SEARCH 76

However, given that policy search procedures are usually non-convex to begin with,

this is typically not a large concern. And as we shall show shortly, for a certain case

where the policy search procedure is solvable in a globally optimal way, it turns out

that we are able to solve (4.5) optimally as well.

Second, to further solidify the intuition of our approach, we consider an alternative

procedure, where we first perform policy search to find optimal parameters for each

sample θ(1)
⋆
, . . . , θ(N)⋆, then run PCA to find a linear subspace of the matrix Θ⋆ =

[

θ(1)
⋆
· · · θ(N)⋆

]

. This will also procedure a factorization Θ⋆ = Ũ Ṽ , but it should be

apparent that

Eψ∼D

[

min
v
J(s; Ũv, ψ)

]

≥ Eψ∼D

[

min
v
J(s;U⋆v, ψ)

]

(4.8)

where U⋆ is the solution to (4.5), i.e., the PCA solution does not give the best

linear subspace in terms of minimizing the cost function (this follows trivially since

(4.5) minimizes this criterion exactly). Intuitively, this is due to the fact that PCA

produces the optimal reconstruction of the policy coefficients, but the coefficients

themselves are somewhat irrelevant: what we really care about is the performance

of the policy induced by these coefficients. Thus, PCA is really focusing on the

wrong criterion here, and although it has its benefits (a globally optimal solution

that is easily computed), these mainly indicate that we could potentially use the

PCA solution as an initial point, and then optimize the criterion (4.5).

4.2.1 Dimensionality Reduction Policy Gradient

Of course, the objective function (4.5) is just an optimization problem, and so we

need an actual algorithm for optimizing this objective. The simplest approach here

is just to consider the factorized form Θ = UV and perform joint minimization over

U and V . This could be accomplished either by alternatively optimizing over one of

the matrices until converging to a local optima, or just by taking a gradient step with

respect to both parameters. Since the latter is the conceptually simpler of the two

approaches, and since the potential advantages of alternating minimization techniques

(particularly pronounced when the optimization problem can be easily solved in one

CHAPTER 4. DIMENSIONALITY REDUCTION IN POLICY SEARCH 77

Algorithm 2 Dimensionality Reduction Policy Gradient (DRPG)

Input:
D: distribution over model parameters
N : number of model samples
f : Rn × Rm × Rℓ → Rn: parameterized dynamics model
C : Rn × Rm → R: cost function
H ∈ Z+: horizon
π : Rn × Rk → Rm: parameterized policy
α ∈ R+: learning rate
U ∈ Rk×p, v(1), . . . , v(N) ∈ Rp: initial policy parameters

Initialization:
• Draw N samples of model parameters ψ(1), . . . ψ(N) ∼ D.

Repeat until convergence:
1. For i = 1, . . . , N , compute gradient: g(i) ← ∇θ(i)J(s; θ

(i), ψ(i)) (θ(i) ≡ Uv(i)).
2. Take a gradient steps in U and v(i) parameters:

• Update U : U ← U − α

(

N
∑

i=1

g(i)(v(i))T

)

.

• For i = 1, . . . , N , update v(i): v(i) ← v(i) − αUT g(i).

For new dynamics st+1 = f ′(st, ut):
• Minimize value function over parameters in the span of U : minv′ J(s;Uv

′, f ′).

variable while keeping the other fixed) are unclear when the objective is convex in

neither variable alone, we adopt this method as our basic algorithm for optimizing

the objective (4.5). We describe the full method in Algorithm 2. We present the

algorithm assuming a deterministic dynamics model, but it can be easily extended to

the stochastic setting via the methods described in Chapter 2.

To see how the algorithm is taking gradient steps in U and v(i), we discuss here how

to compute the gradient terms ∇UJ(s;Uv
(i), ψ(i)) and ∇v(i)J(s;Uv

(i), ψ(i)). While not

identical to previously described terms, these can easily be related to the standard

policy gradient. Using Uj to denote the jth column of U , and θ = Uv(i) we have

∂J(s;Uv(i))

∂Uj
=
∂J(s; θ)

∂θ

∂Uv(i)

∂Uj
=
∂J(s; θ)

∂θ
(v

(i)
j I) (4.9)

CHAPTER 4. DIMENSIONALITY REDUCTION IN POLICY SEARCH 78

and
∂J(s;Uv(i))

∂v(i)
=
∂J(s; θ)

∂θ

∂Uv(i)

∂v(i)
=
∂J(s; θ)

∂θ
U (4.10)

so

∇UJ(s;Uv
(i)) = (∇θJ(s; θ))(v

(i))T , and ∇v(i)J(s;Uv
(i)) = UT (∇θJ(s; θ)). (4.11)

Thus, we can compute ∇θJ(s; θ, ψ
(i)) for θ = Uv(i) using the standard (model-based)

methods described in Chapter 2, and then convert these to the factorized parameter

gradients using (4.11). It should be apparent that the algorithm is updating the U

and v(i) terms according to these gradients.

4.2.2 Least Squares Policy Search

In some situations the task of policy search can in fact be expressed as a least squares

problem. While this is obviously a very restricted special case of policy search, given

the preceding discussion in this work, we indeed will soon focus on a control task

(learning an omnidirectional trot gait on a quadruped robot) that can be framed in

this manner. In such a setting, it turns out that we are able to solve the optimization

problem (4.5) for dimensionality reduction policy search optimally, despite the non-

convexity of the problem; we do this using an algorithm known as Reduced Rank

Regression (Reinsel and Velu, 1998).

More formally, we suppose that the optimal parameters for the ith model can be

solved (or at least, approximated) via the least-squares problem

min
θ
J(θ) ≡ ‖Xθ − y(i)‖2 (4.12)

for some X ∈ Rq×k, and y(i) ∈ Rq. Setting up a policy search task in such a manner

is not an obvious transformation, so we will shortly describe in some detail how one

policy search task for the quadruped robot can be framed in this manner. For the

time being, though, we will take (4.12) as an assumption, and demonstrate how to

solve the optimization problem (4.5) optimally.

Defining the policy matrix Θ as in (4.4) and defining the design matrix Y ∈ Rq×N

CHAPTER 4. DIMENSIONALITY REDUCTION IN POLICY SEARCH 79

similarly as

Y =
[

y(1) · · · y(N)
]

(4.13)

then the optimization problem (4.5) becomes equivalent to

min
Θ

‖XΘ− Y ‖2F

s.t. rank(Θ) = p.
(4.14)

The optimal solution to this task, given by the Reduced Rank Regression algorithm

is,

Θ⋆ = (XTX)−1XTYWW T (4.15)

where the columns of W ∈ RN×p correspond to the p principal eigenvectors of the

matrix

Y TX(XTX)−1XTY. (4.16)

This result is proved in (Reinsel and Velu, 1998, Theorem 2.2). The optimal values

for U and V can be read directly from this solution as

U = (XTX)−1XTYW, V = W T . (4.17)

Notice that the Reduced Rank Regression solution can be interpreted as the least

squares solution (XTX)−1XTY projected into the subspace spanned by W . When

W is full rank (i.e., there is no rank constraint), then WW T = I, and the solution

coincides with the least squares solution, as we would expect.

4.3 Application to Omnidirectional Path Follow-

ing

The task we are interested in here is one of omnidirectional path following using

a “trot” gait on a quadruped robot. Again, we will be using the LittleDog robot,

described in greater detail in Chapter 6, but here we briefly describe the particular

task we focus on. Omnidirectional path following refers to the task of following an

CHAPTER 4. DIMENSIONALITY REDUCTION IN POLICY SEARCH 80

arbitrary spline with the robot’s body, with turning in an arbitrary manner; in other

words, the robot acts as a holonomic system: able to move in any direction while

orienting itself in any manner. Trot gaits refer to gaits that move two feet of the

robot at once (trots move diagonally opposing feet at the same time), as opposed to

slower “walking” gaits that move only one foot at a time.

The primary challenging in developing a controller capable of omnidirection trot-

ting is one of balance. Because only two of the robot’s feet are on the ground at one

time, the robot will not be statically stable; furthermore, the LittleDog robot does

not have the requisite power in its legs to maintain any kind of dynamic stability

during the trot. Rather, our approach to a trot gait merely attempts to balance “on

average”; as soon as the robot raises its legs it will start to fall, but by properly

placing the center of gravity (COG) before taking the step, our goal is to balance the

robot as well as possible, such that we can quickly move both moving feet before the

robot has tipped to either side.

4.3.1 A Balancing Policy for Omnidirectional Trotting

When the robot is trotting in a fixed direction, then learning a good balancing policy is

fairly straightforward. In particular, we can achieve good balance by simply offsetting

the robot’s COG some amount with respect to the average “center” position of the

moving feet. In other words, finding a policy for balancing when traveling in a fixed

direction can be framed as a policy search task with two parameters θ = (xoff , yoff).

We can thus use the signed derivative algorithm from the previous chapter to easily

estimate these parameters. Skipping the precise details of the formulation, the final

form of the signed derivative update for this task is to repeat the update

xoff ← xoff + α ((tFL − tBR) + (tFR − tBL))

yoff ← yoff + α ((tFL − tBR)− (tFR − tBL))
(4.18)

where α is the learning rate, and tFL, tFR, tBL, , tBR are the touchdown times for the

four different feet (front left, front right, back left, back right), as measured by foot

force sensors on the robot. Intuitively, this update is adjusting the COG location in

CHAPTER 4. DIMENSIONALITY REDUCTION IN POLICY SEARCH 81

response to which of the robot’s feet touches down first: for example, if the back left

leg hits before the front right, tFR − tBL > 0, so xoff is increased, shifting the COG

more forward. A video of the robot learning how to balance using this method for

forward walking is available at http://ai.stanford.edu/~kolter/ijrr09ld/.

The challenge comes, however, when the robot is not walking in a fixed manner,

but is constantly changing its direction and rate of turn, as is the case for omnidi-

rectional path following. In particular, each step of a trot gait in an omnidirectional

motion is described by two parameters: a direction χ ∈ [−π, π], which denotes the

direction of travel relative to the robot’s orientation (so that χ = 0 implies we are

walking forward), and a turn angle ω ∈ [−π, π], which denotes the amount to turn

per step (so that ω = 0 implies we are not turning, and ω = π/2 implies we turn

90 degrees to the left in one step). Of course, different directions and turn angles

necessitate different COG offsets, denoted

xoff(χ, ω), yoff(χ, ω) (4.19)

and through experimentation we have found that it is non-trivial to devise a simple

strategy to choose these COG offsets as a function of the direction and turn angle.

Thus, we parametrize a function to choose these COG offsets, and let the parameters

of this function be our policy parameters that we want to find.

Since the direction angle and turning angle are inherently periodic — i.e., a di-

rection of 2π is identical to a direction angle of 0 — the Fourier bases are a natural

means of representing these functions. We therefore represent xoff(χ, ω) and yoff(χ, ω)

as

xoff(χ, ω) = θTx φ(χ, ω), yoff(χ, ω) = θTy φ(χ, ω) (4.20)

where

θ =

[

θx ∈ Rk/2

θy ∈ Rk/2

]

(4.21)

CHAPTER 4. DIMENSIONALITY REDUCTION IN POLICY SEARCH 82

are the parameters of our policy, and

φ(χ, ω) =



















cos(iχ) cos(jω)

sin(iχ) cos(jω)

cos(iχ) sin(jω)

sin(iχ) sin(jω)
...



















, i, j = 0, 1, . . . (4.22)

denote the first k/2 principal Fourier basis functions of χ and ω — here the range of i

and j are chosen so that the dimension of φ is also k/2. In particular, for this domain

we found that in order to express a sufficiently general policy to balance properly, we

needed to choose the range of i and j above such that there are k = 98 parameters.

4.3.2 Policy Search as Least Squares

Given this class of policies, we can solve for the optimal policy class θ in the following

manner. For any fixed χ and ω, we can run the signed derivative approach to find

the xoff and yoff that are optimal for this direction and turn angle. Then, given a

collection of direction angles, turning rates, and their corresponding center offsets,

we can learn the coefficients θx and θy by least squares regression. Specifically, if we

are given a set of n direction angles, turning rates, and resulting x center offsets,

{χi, ωi, xoff,i}, i = 1 . . . n, then we can learn the parameters θx ∈ Rk by solving the

optimization problem

min
θx
‖y −Xθx‖

2
2 (4.23)

where X ∈ Rn×k and y ∈ Rn are design matrices defined as

X = [φ(χ1, ω1) . . . φ(χn, ωn)]
T y = [xoff,1 . . . xoff,n]

T . (4.24)

The solution to this problem is given by θx = (XTX)−1XTy, and using a well known

sample complexity result (Anthony and Bartlett, 1999), we need Ω(k) data points to

find such a solution.

Unfortunately, computing a sufficient number of center offsets on the real robot

CHAPTER 4. DIMENSIONALITY REDUCTION IN POLICY SEARCH 83

is a time-consuming task. Although the signed derivative can find an optimal COG

offset in about a minute under ideal circumstances, several difficulties arise if we try

to apply this algorithm more than 100 times to find these different parameters: most

notably, running the robot this long, especially at the early stages of learning where

the balancing policy is quite poor, causes a great deal of strain on the robot’s gears,

often degrading joint angle calibration by bashing its feet into the ground. And

although it is significantly easier to find proper joint offsets in a simulation model

(we can run the same algorithm without any fear of damaging the hardware), it is

difficult to create a simulator that accurately reflects the center offset positions in the

real robot. Indeed, we invested a great deal of time trying to learn parameters for

the simulator that reflected the real system as accurately as possible, but still could

not build a simulator that behaved sufficiently similarly to the real robot. Thus, in

order to learn a policy on the real system we applied our dimensionality reduction

algorithm in the following manner.

4.3.3 Experimental Setup and Results

Here we present experimental results on applying our method to learn a controller

for omnidirectional path following. The simulator we built is based on the physi-

cal specifications of the robot and uses the Open Dynamics Engine (ODE) physics

environment.1

Our experimental design was as follows: We first sampled 100 simulation mod-

els from a distribution over the simulator parameters. In particular, we varied the

simulators primarily by adding a constant bias to each of the joint angles, where

these bias terms were sampled from a Gaussian distribution. We also experimented

with varying several other parameters, such as the centers of mass, weights, torques,

and friction coefficients, but found that none of these had as great an effect on the

resulting policies as the joint biases. This is somewhat unsurprising, since the real

robot has constant joint biases. However, we reiterate the caveat mentioned in the

previous section: it is not simply that we need to learn the correct joint biases in

1ODE is available at http://www.ode.org.

CHAPTER 4. DIMENSIONALITY REDUCTION IN POLICY SEARCH 84

order to achieve a perfect simulator; rather, the results suggest that perturbing the

joint biases results in a class of policies that is robust to the typical variations in

model dynamics.

In each of these simulation models, we used the online balancing algorithm de-

scribed in Section 4.3.1 to find center offsets for a variety of fixed directions and turn-

ing rates. For each model, we generated 100 data points, with turning angles spaced

evenly between -1.0 and 1.0, and direction angles from 0 to 2π. We constrained the

centering function (in both the x and y directions), to be a linear combination of the

first k = 49 Fourier bases of the direction angle and turning rate. We then applied

the Reduced Rank Regression algorithm to learn a low-dimensional representation of

this function with only ℓ = 2 parameters, effectively reducing the number of param-

eters by more than 95%. Two bases was the smallest number that achieved a good

controller with the data we collected: one basis vector was not enough, three basis

vectors performed comparably to two, but had p no visible advantage, and four basis

vectors began to over-fit to the data we collected from the real robot, and started to

perform worse.

Finally, to learn a policy on the actual robot, we used the online centering algo-

rithm to compute proper center locations for 12 fixed maneuvers on the robot and

used these data points to estimate the parameters of the low-dimensional policy. In

greater detail, for 12 different turning angles and direction angles, we ran the on-

line learning algorithm presented in Section 4.3.1, to find the correct x and y center

offsets in the real system. Given these 12 data points (far too few to learn the full

dimensional policy, we searched within the linear subspace found by our algorithm to

find a controller that captured these optimal center locations as closely as possible,

and used this controller for balancing the robot.

To evaluate the performance of the omnidirectional gait and the learned centering

function, we used three benchmark path splines: 1) moving in a circle while spinning

in a direction opposite to the circle’s curvature; 2) moving in a circle, aligned with the

circle’s tangent curve; and 3) moving in a circle keeping a fixed heading. To quantify

performance of the robot on these different tasks, we used four metrics: 1) the amount

of time it took for the robot to complete an entire loop around the circle; 2) the root

CHAPTER 4. DIMENSIONALITY REDUCTION IN POLICY SEARCH 85

Figure 4.1: Pictures of the quadruped robot following several paths.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

X location

Y
 lo

ca
tio

n

Desired Path
Actual Path

(a) Desired and actual tra-
jectories for the learned
controller on path 1.

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

X Center Offset

Y
 C

en
te

r
O

ffs
et

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Turn Angle:

(b) Learned center offset
curves for several different
turning angles.

Figure 4.2: Trajectory and center offsets for the learned controller.

CHAPTER 4. DIMENSIONALITY REDUCTION IN POLICY SEARCH 86

Metric Path Learned Centering No Centering Hand-tuned Centering

Loop Time (sec)
1 31.65 ± 2.43 46.70 ± 5.94 34.33 ± 1.19
2 20.50 ± 0.18 32.10 ± 1.79 31.69 ± 0.45
3 25.58 ± 1.46 40.07 ± 0.62 28.57 ± 2.21

Foot Hit RMSE (sec)
1 0.092 ± 0.009 0.120 ± 0.013 0.098 ± 0.009
2 0.063 ± 0.007 0.151 ± 0.016 0.106 ± 0.010
3 0.084 ± 0.006 0.129 ± 0.007 0.097 ± 0.006

Distance RMSE (cm)
1 1.79 ± 0.09 2.42 ± 0.10 1.84 ± 0.07
2 1.03 ± 0.36 2.80 ± 0.41 1.98 ± 0.21
3 1.58 ± 0.11 2.03 ± 0.07 1.85 ± 0.16

Angle RMSE (rad)
1 0.079 ± 0.006 0.075 ± 0.009 0.067 ± 0.013

2 0.070 ± 0.011 0.070 ± 0.002 0.077 ± 0.006
3 0.046 ± 0.007 0.058 ± 0.012 0.071 ± 0.009

Table 4.1: Performance of the different centering methods on each of the three bench-
mark paths, averaged over 5 runs, with 95% confidence intervals.

mean squared difference of of the foot hits (i.e., the time difference between when

the two moving feet hit the ground); 3) the root mean squared error of the robot’s

Euclidean distance from the desired path; and 4) the root mean squared difference

between the robot’s desired angle and its actual angle.

Note that these metrics obviously depend on more than just the balancing con-

troller — speed, for example, will of course depend on the actual speed parameters

of the trot gait. However, we found that good parameters for everything but the

balancing controller were fairly easy to choose, and the same values were optimal,

regardless of the balancing policy used. Therefore, the differences in speed/accuracy

between the different controllers we present is entirely a function of how well the

controller is capable of balancing — for example, if the robot is unable to balance it

will slip frequently and its speed will be much slower than if it can balance well.

We note that prior to beginning our work on learning basis functions, we spent

a significant amount of time attempting to hand-code a centering controller for the

robot. We present results for this hand-tuned controller, since we feel it represents

an accurate estimate of the performance attainable by hand tuning parameters. We

also evaluated the performance of the omnidirectional gait with no centering. The

controller using a policy based entirely from the “mean” simulator model performed

comparably to the policy with no balancing at all; this suggests that in this case, our

simulation model was quite different from the real system, but it still enabled us to

learn a suitable subspace.

CHAPTER 4. DIMENSIONALITY REDUCTION IN POLICY SEARCH 87

Figure 4.1 shows pictures of the robots following some of the benchmark paths,

as well as an additional star-shaped path. Videos of these experiments are available

at: http://ai.stanford.edu/~kolter/omnivideos.

Table 4.1 shows the performance of each centering method, for each of the four

metrics, on all three benchmark paths.2 As can be seen, the learned controller out-

performs the other methods in nearly all cases. As the distance and angle errors

indicate, the learned controller was able to track the desired trajectory fairly accu-

rately. Figure 4.2(a) shows the actual and desired position and orientation for the

learned centering controller on the first path. Figure 4.2(b) shows the learned center

offset predictor trained on data from the real robot. This figure partially explains

why hand-tuning a controller can be so difficult: at higher turning angles the proper

centers form unintuitive looping patterns.

4.4 Summary

In this chapter we presented a method for dimensionality reduction in policy search

tasks. The algorithm finds a low dimensional subspace of control parameters that

contains good controllers over a variety of different models: thus, by considering a

distribution over possible models we can find a reduced subspace of possible control

policies. This reduces the dimension of the policy search task on the real system,

and can make such methods much more practical in real domains. The method

is particularly applicable to situations where we have some uncertainty over certain

model parameters (either due to poor modeling or the fact that the system can change

over time), and we want to find a small subspace of controllers that perform well over

this entire distribution. We began the chapter with a general form of the algorithm

applicable to policy gradient methods, then specialized the algorithm to the special

case where the policy search task can be framed as a least squares problem. Using

the latter formulation, we apply our method to the task of learning a low-dimensional

2The foot hit errors should not be interpreted too literally. Although they give a sense of the
difference between the three controllers, the foot sensors are rather imprecise, and a few bad falls
greatly affect the average. They therefore should not be viewed as an accurate reflection of the foot
timings in a typical motion.

CHAPTER 4. DIMENSIONALITY REDUCTION IN POLICY SEARCH 88

control parametrization for omnidirectional path following with the LittleDog robot,

and demonstrate the method is able to learn a highly reduced subset of control laws

that achieve very good performance on the task.

Of course, we again note that the method we present here is not applicable to

all control tasks. In particular, although we are using an inaccurate model to learn

the low-dimensional control parametrization, we still require that the model capture

some degree of accuracy, or else we may be unable to achieve good performance on

the real system using any policy from this subspace. Thus, for domains where the

dynamics are difficult to model, even in the sense of determining some distribution

over possible models, our method likely will not find a suitable controller subspace.

Nonetheless, as we demonstrate in this chapter, there are certainly cases where we

can find a good subspace of controllers, even when the exact dynamics of the true

system are very difficult to model, and we have demonstrated the potential of the

algorithm in such a setting.

Chapter 5

Multi-model Control for Mixed

Closed-loop/Open-loop Behavior

The previous two chapters considered methods for exploiting inaccurate models,

though in both cases the model still captured some element of the true model cor-

rectly: either through the dominant signs of the model, or by capturing some distri-

bution over unknown parameters. In contrast, this chapter deals with the scenario

where a model truly cannot capture the relevant portions of a system, either because

the true system is too complex or because of non-Markovian and/or hidden state

variables. In such settings it may indeed seem as though we would be unable to use a

model in order to obtain good performance on the system. And to some extent this is

true: if the model is unable to capture the relevant portions of the system dynamics,

then it seems unlikely (almost by definition), that we could use the model alone to

create a good control policy.

Fortunately, there is an aspect of many control tasks that mitigates this problem.

In particular, we repeatedly observe in practice that even if the model is difficult to

learn, real dynamical systems are often remarkably deterministic over short periods

of time: if we execute the same sequence of control inputs from an identical or nearly

identical initial state, the system often behaves in a very similar manner, even if it

is very hard to predict how the system would respond to different inputs. We have

89

CHAPTER 5. MIXED CLOSED-LOOP/OPEN-LOOP CONTROL 90

repeatedly observed such behavior in the LittleDog robot (many static climbing ma-

neuvers can be executed in an entirely open-loop manner as long as the robot carefully

positions itself first), in helicopter control (aerobatic maneuvers are executed virtu-

ally open-loop by skilled pilots, again once the system has been put into a proper

initial state), in the aerodynamic task of landing a hang-glider (approach to the run-

way involves careful control, but the actual landing is a largely open loop procedure

that stops the glider quickly by inducing an uncontrolled stall), and of course in the

car-driving task that we will describe in great detail. Intuitively, these observations

motivate an alternating control strategy, where we would want to actively control

the system using classical methods in well-modeled regimes, but execute open-loop

trajectories in poorly modeled regions, provided we have seen a previous demonstra-

tion of the desired behavior. Indeed, as we will discuss shortly, such strategies have

previously been used to control a variety of systems, though these have mostly relied

on hand-tuned switching rules to determine when to execute the different types of

control.

In this chapter, we make two contributions. First, we develop a probabilistic

approach to mixed open-loop and closed-loop control that achieves performance far

superior to each of these elements in isolation. In particular, we propose a method for

applying optimal control algorithms to a probabilistic combination of 1) a “simple”

model of the system that can be highly inaccurate in some regions and 2) a dynamics

model that describes the expected system evolution when executing a previously-

observed trajectory. By using variance estimates of these different models, our method

probabilistically interpolates between open-loop and closed-loop control in an optimal

manner, thus producing mixed controllers without the typical hand-tuning. Second,

we apply this algorithm to the challenging task of a “sliding parallel park” on a

full-sized autonomous car — that is, accelerating a car to 25 mph, then slamming

on the brakes while turning the steering wheel, skidding the car sideways into a

narrow desired location. To the best of our knowledge, this is the first autonomous

demonstration of such behavior on a car, representing the state of the art in accurate

control for such types of maneuvers.

CHAPTER 5. MIXED CLOSED-LOOP/OPEN-LOOP CONTROL 91

5.1 Related Work

There is a great deal of work within both the machine learning and control commu-

nities that is relevant to the work we present here. As mentioned previously, the

mixed use of open-loop and closed-loop control is a common strategy in robotics and

control (e.g., Atkeson and Schaal, 1997; Hodgins and Raibert, 1990; Gillula et al.,

2010), though typically these involve hand-tuning the regions of closed-loop/open-

loop control. One exception to this is the work of Gillula et al. (2010), developed

concurrently to the techniques we present here, which use robust control methods to

determine execution regions for the different controllers; however, the algorithms and

focus of this method and our own are quite different. The work of Hansen et al.,

(Hansen et al., 1996) also considers a mixture of open-loop and closed-loop control,

though here the impetus for such control comes from a cost to sensing actions, not

from difficulty of modeling the system, and thus the algorithms are very different.

Our work also relates to work on multiple models for control tasks (Murray-Smith

and Johansen, 1997). However, with few exceptions the term “multiple models” is

typically synonymous with “local models,” building or learning a collection of models

that are each accurate in a different portion of the state space — for example, locally

linear models, (Schaal, 1994; Christopher G. Atkeson, 1997; Vijayakumar et al., 2005;

Doya et al., 2002) or non-parametric models such as Gaussian Processes (Ko et al.,

2007). Standard local models are typically defined such that the model designer must

manually specify the regions of validity for each of the model, and only one model

is used at each point in the state space; this contrasts with our approach, where we

use a Gaussian observation models to combine predictions from all models jointly,

using estimates of their variance. More broadly, though, fundamentally our method

certainly could be considered a local model method, but novelty of our approach

comes largely from the specific nature of the different models we use, and how this

naturally leads to the desired behavior of mixed open-loop and closed-loop control.

From the control literature, our work perhaps most closely resembles the work

on multiple model adaptive control (Narendra and Balakrishnan, 1997; Schott and

Bequette, 1997). Like our work, this line of research takes motivation from the fact

CHAPTER 5. MIXED CLOSED-LOOP/OPEN-LOOP CONTROL 92

that different models can capture the system dynamics with different degrees of uncer-

tainty, but again like the previous work in machine learning, this research has typically

focused on learning or adapting multiple local models of the system to achieve better

performance.

Our work also relates somewhat more loosely to a variety of other research in

reinforcement learning. For instance, the notion of “trajectory libraries” has been

explored for reinforcement learning and robotics (Stolle and Atkeson, 2006; Stolle

et al., 2007), but this work has primarily focused on the trajectories as a means for

speeding up planning in a difficult task. The notion of learning motor primitives has

received a great deal of attention recently (e.g. (Peters and Schall, 2004)), though

such research is generally orthogonal to what we present here. These motor prim-

itives typically involve feedback policies that are not model-based, and we imagine

that similar techniques to what we propose here could also be applied to learn how

to switch between model-based and motor-primitive-based control. Indeed to some

extent our work touches on the issue of model-based versus model-free reinforcement

learning (Atkeson and Santamaria, 1997) where our open-loop controllers are simply

a very extreme example of model-free control, but we could imagine applying similar

algorithms to more general model-free policies.

Finally, there has been a great deal of past work on autonomous car control, for

example (Hoffmann et al., 2007). Some of this work has even dealt with slight forays

into control at the limits of handling (Hsu and Gerdes, 2005), but all such published

work that we are aware of demonstrates significantly less extreme situations than what

we describe here, or includes only simulation results. We are also aware of another

group at Stanford working independently on control at the limits of handling (Gerdes,

2009), but this work revolves more around physics-based techniques for stabilizing the

system in an unstable “sliding” equilibrium, rather than executing maneuvers with

high accuracy.

CHAPTER 5. MIXED CLOSED-LOOP/OPEN-LOOP CONTROL 93

5.2 A Probabilistic Framework for Multiple Model

Control

Here we present a general method for combining multiple control models, and demon-

strate that when we apply this algorithm to two particular types of models, we nat-

urally achieve behavior that trades off between executing a closed-loop maneuver

when we have a good model of the dynamics, and an open-loop maneuver when our

model is inaccurate. In particular, we will first present an extension of LQR, which

we call Multi-model LQR, that can deal with predictions from multiple probabilis-

tic dynamics models. We then develop a simple model for capturing the dynamics

of previously observed trajectories, and we show that when we provide both this

model and an inaccurate dynamics model to our Multi-model LQR algorithm, the

algorithm will smoothly interpolate between closed-loop and open-loop control in the

proper manner.

To formalize our framework, we are operating in the trajectory-following setting

from Chapter 2, where we want to follow some desired trajectory τ ⋆ = (s⋆0, u
⋆
0, . . . , s

⋆
H , u

⋆
H)

(which we assume is realizable on the real system), and the cost function is given by

Ct(s, u) = (s− s⋆t)
TQ(s− s⋆t) + (u− u⋆t)

TR(u− u⋆t). (5.1)

The ability to execute the trajectory on the real system does not imply that we will

necessarily be able to execute the entire sequence repeatedly in an open-loop manner.

In particular, although we motivated our overall approach by appealing to the fact

that real system were often remarkably deterministic, we need to add the caveat that

this does of course only apply over relatively short timescales (on the order of a few

seconds), and only when initial states are very similar. In the setting of general

trajectory following, where the trajectory may span many seconds and the initial

state of the system may differ from the initial state in trajectory, we need additional

methods (such as LQR) to control the system.

We also suppose that we have access to an (inaccurate) stochastic model of the

CHAPTER 5. MIXED CLOSED-LOOP/OPEN-LOOP CONTROL 94

form

st+1 = f(st, ut) + ǫt (5.2)

and the assumption is that this model may be accurate in certain portions of the

state space, but inaccurate in others. To capture this inaccuracy, we extend our

previous definitions and assume that the noise term for this model is a state and

control dependent Gaussian, i.e.,

ǫt ∼ N (0,Σ(st, ut)). (5.3)

The covariance terms Σi(st, ut) are interpreted as maximum likelihood covariance

estimates, i.e., for true next state st+1,

Σ(st, ut) = E
[

(st+1 − f(st, ut))(st+1 − f(st, ut))
T
]

. (5.4)

This notion of the variance as a maximum likelihood estimate is very important,

because it implies that the variance term for our model actually captures two sources

of error: 1) the true stochasticity of the world and 2), the inaccuracy of the model.

Because we assume that the stochasticity of real system is small over short time

periods, this implies that the variance term will typically be dominated by the second

element; thus, the model variance in a sense acts as a proxy for the inaccuracy of the

model, one that algorithms can exploit to determine when to trust the model and

when to execute open loop controls.

5.2.1 LQR with multiple probabilistic models

Here we present our general extension of LQR, called Multi-model LQR, for com-

bining multiple probabilistic models with the LQR algorithm. We suppose that we

are given two approximate dynamical models of the form above, M1 and M2 — the

generalization to more models is trivial and we consider two just for simplicity of pre-

sentation. To combine multiple probabilistic models of this form, we interpret each

prediction as an independent observation of the true next state, and can then com-

pute the posterior distribution over the next state given both models by a standard

CHAPTER 5. MIXED CLOSED-LOOP/OPEN-LOOP CONTROL 95

manipulation of Gaussian probabilities,

p(st+1|M1,M2) = N (f̄(st, ut), Σ̄(st, ut)) (5.5)

where

Σ̄ =
(

Σ−1
1 + Σ−1

2

)−1
, and f̄ = Σ̄

(

Σ−1
1 f1 + Σ−1

2 f2
)

(5.6)

and where the dependence on st and ut is omitted to simplify the notation in this last

line. In other words, the posterior distribution over next states is a weighted average

of the two predictions, where each model is weighted by its inverse covariance. This

combination is analogous to the Kalman filter measurement update.

We could now directly apply LQR to this joint model by simply computing

f̄(s⋆t , u
⋆
t) and its derivatives at each point along the trajectory. Specifically, we could

run LQR exactly as described in Chapter 2, using the linear approximation of the

error dynamics

δst+1 = Atδst + Btδut (5.7)

where δst ≡ st − s⋆t and δut ≡ ut − u⋆t , where At and Bt are the Jacobians of f̄

evaluated at s⋆t and u
⋆
t ,

At =
∂f̄(s⋆t , u

⋆
t)

∂s⋆t
, Bt =

∂f̄(s⋆t , u
⋆
t)

∂u⋆t
, (5.8)

and the noise term is given by wt ∼ N (0, Σ̄(s⋆t , u
⋆
t)). However, combining these models

in this manner will lead to poor performance. This is due to the fact that we would

be computing Σ1(s
⋆
t , u

⋆
t) and Σ2(s

⋆
t , u

⋆
t) only at the desired location, which can give

a very inaccurate estimate of each model’s true covariance. For example, consider

a learned model that is trained only on the desired trajectory; such a model would

have very low variance at the actual desired point on the trajectory, but much higher

variance when predicting nearby points. Thus, what we really want to compute is

the expected covariance of each model, in the region where we expect the system to

be. We achieve this effect by maintaining a distribution Dt over the expected state

(errors) at time t (i.e., a distribution over δst). Given such a distribution, we can

CHAPTER 5. MIXED CLOSED-LOOP/OPEN-LOOP CONTROL 96

approximate the average covariance

Σi(Dt) ≡ Eδst,δut∼Dt
[Σi(s

⋆
t + δst, u

⋆
t + δut)] (5.9)

via sampling or other methods. This notion of maintaining a distribution over ex-

pected states is well-known in reinforcement learning (Bagnell et al., 2004), but we

have not seen a specialization of such ideas to this form of LQR algorithm.

The last remaining element we need is a method for computing the state (error)

distributions Dt. Fortunately, given the linear model assumptions that we already

employ for LQR, computing this distribution analytically is straightforward. In par-

ticular, we first assume that our initial state distribution D0 is a zero-mean Gaussian

with mean zero and covariance Γ0. Since LQR outputs a closed-loop controller of the

form δut = Ktδst, our closed-loop state error dynamics evolve according to the linear

model δst+1 = (At + BtKt)δst, the covariance of Dt, Γt, is updated by

Γt+1 = (At + BtKt)Γt(At + BtKt)
T + Σ̄(Dt). (5.10)

Of course, since we average the different models according to the Σi(Dt), changing Dt

will therefore also change At and Bt. Thus, we iteratively compute all these quantities

until convergence. A formal description of the algorithm is given in Algorithm 3.

5.2.2 A dynamics model for open-loop trajectories

The method above is a general algorithm for combining probabilistic models with an

LQR-based approach, but recall that our overall goal is to combine closed-loop control

in well-modeled regions with open-loop control in poorly modeled regions. Thus, in

this section we develop a probabilistic model that describes how the state will evolve

when executing a sequence of previously observed controls; combining this with a

typical inaccurate dynamics model using the algorithm above will then naturally lead

to the desired behavior. While generally one would want to select from any number of

possible trajectories to execute, for the simplified algorithm in this section we consider

only the question of executing the control actions of the ideal trajectory u⋆0:H .

CHAPTER 5. MIXED CLOSED-LOOP/OPEN-LOOP CONTROL 97

Algorithm 3 Multi-model LQR (MM-LQR)

Input:
Γ0:H : initial state error covariance
M1,M2: probabilistic dynamics models
s⋆0:H , u

⋆
0:H : desired trajectory

Q,R: LQR cost matrices

Repeat until convergence:

1. For t = 0, . . . , H, compute dynamics models

• For i = 1, 2, compute expected covariances:
Σi(Dt)← Eδst∼N (0,Γt) [Σi(s

⋆
t + δst, u

⋆
t +Ktδst)] .

• Compute averaged model:

Σ̄t ←
(

Σ−1
1 (Dt) + Σ−1

2 (Dt)
)−1

, f̄ ← Σ̄t

(

Σ−1
1 (Dt)f1 + Σ−1

2 (Dt)f2
)

.

• Linearize dynamics of averaged model:

At ←
∂f̄(s⋆t , u

⋆
t)

∂s⋆t
, Bt ←

∂f̄(s⋆t , u
⋆
t)

∂u⋆t
.

2. Run LQR to find optimal controllers Kt:

K0:H−1 ← LQR(A0:H−1, B0:H−1, Q,R).

3. For t = 0, . . . , H − 1, update state distributions:

Γt+1 ← (At + BtKt)Γt(At + BtKt)
T + Σ̄t

To allow our model to be as general as possible, we assume a very simple proba-

bilistic description of how the states evolve when executing these fixed sequences of

actions. In particular, we assume that the error dynamics evolve according to

δst+1 = ρδst + wt

where ρ ∈ R (typically ≈ 1) indicates the stability of taking such trajectory actions,

and where wt is a zero-mean Gaussian noise term with covariance Σ(δst, δut), which

depends only on the state and control error and which captures the covariance of the

model as a function of how far away we are from the desired trajectory. This model

captures the following intuition: if we are close to a previously observed trajectory,

then we expect the next error state to be similar, with a variance that increases the

CHAPTER 5. MIXED CLOSED-LOOP/OPEN-LOOP CONTROL 98

more we deviate from the previously observed states and actions. While it may seem

odd to suppose that the next predicted mean state is independent of the control,

a single trajectory couldn’t convey any additional information: we only know how

the system responded to a particular control input u⋆t for a particular state, s⋆t , and

we have no information about how the system would have responded had we acted

otherwise.

To see how this model naturally leads to trading off between actively controlling

the system and largely following known trajectory controls, we consider a situation

where we run the Multi-model LQR algorithm with an inaccurate model1 M1 and this

described trajectory model, M2. Consider a situation where our state distribution Dt

is tightly peaked around the desired state, but where M1 predicts the next state

very poorly. In this case, the maximum likelihood covariance Σ1(Dt) will be large,

because M1 predicts poorly, but Σ2(Dt) will be much smaller, since we are still close

to the desired trajectory. Therefore f̄ will be extremely close to the trajectory model

M2, and so will lead to system matrices At ≈ ρI and Bt ≈ 0 (since these are the

derivatives of the trajectory model). Therefore, since no delta can affect the state

very much, LQR will choose controls δut ≈ 0 — i.e., execute controls very close to u⋆t ,

as this will minimize the expected cost function. In contrast, if we are far away from

the desired trajectory, or if the model M1 is very accurate, then we would expect to

largely follow this model, as it would have lower variance than the naive trajectory

model. In practice, the system will smoothly interpolate between these two extremes

based on the variances of each model.

5.2.3 Estimating Variances

Until now, we have assumed that the covariance terms Σi(st, ut) have been given,

though in practice these will need to be estimated from data. Recall that the variances

we want to learn are ML estimates of the form

Σi(st, ut) = E
[

(st+1 − fi(st, ut))(st+1 − fi(st, ut))
T
]

1For the purposes of this discussion it does not matter how M1 is obtained, and could be built,
for example, from first principles, or learned from data, as we do the car in Section 5.3.

CHAPTER 5. MIXED CLOSED-LOOP/OPEN-LOOP CONTROL 99

so we could use any number of estimation methods to learn these covariances, and our

algorithm is intentionally agnostic about how these covariances are obtained. Some

modeling algorithms, such as Gaussian Processes, naturally provide such estimates,

but for other approaches we need to use additional methods to estimate the covari-

ances. Since we employ different methods for estimating the variance in the two sets

of experiments below, we defer a description of the methods to these sections below.

5.3 Experiments

In this section we present experimental results, first on a simple simulated cart-

pole domain, and then on our main application task for the algorithm, the task of

autonomous sideways sliding into a parking spot.

5.3.1 Cart-pole Task

To easily convey the intuition of our algorithm, and also to provide a publicly available

implementation, we evaluated our algorithm on a simple cart-pole task (where the

pole is allowed to freely swing entirely around the cart). The cart-pole is a well-studied

dynamical system, and in particular we consider the control task of balancing an up-

right cart-pole system, swinging the pole around a complete revolution while moving

the cart, and then balancing upright once more. Although the intuition behind this

example is simple, there are indeed quite a few implementation details, and the source

code for this example is available at: http://ai.stanford.edu/~kolter/icra10.

The basic idea of the cart-pole task for our setting is as follows. First, we provide

our algorithm with an inaccurate model of the dynamical system; the model uses a

linear function of state features and control to predict the next state, but the features

are insufficient to fully predict the cart-pole dynamics. As a result the model is

fairly accurate in the upright cart-pole regions, but much less accurate during the

swing phase. In addition, we provide our algorithm with a single desired trajectory

(the target states and a sequence of controls that will realize this trajectory under a

zero-noise system). Because we are here focused on evaluating the algorithm without

CHAPTER 5. MIXED CLOSED-LOOP/OPEN-LOOP CONTROL 100

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

Figure 5.1: (left) Trajectory followed by the cart-pole under open-loop control (mid-
dle) LQR control with an inaccurate model and (right) Multi-model LQR with both
the open loop trajectory and inaccurate model.

Method Avg. Total Cost
LQR (true model) 18.03 ± 1.61

LQR (inaccurate model) 96,191 ± 21,327
LQR (GP model) 96,712 ± 21,315

Open Loop 67,664 ± 13,585
Multi-model LQR 33.51 ± 4.38

Hand-tuned Switching Control 73.91 ± 13.74

Table 5.1: Total average cost at the last time step for different algorithms on the
cart-pole task.

consideration for the method used to estimate the variances, for this domain we

estimate the variances exactly using the true simulation model and sampling.

Figure 5.1 shows the system performance using three different methods: 1) fully

“open loop” control, which just replays the entire sequence of controls in the desired

trajectory, 2) running LQR using only the inaccurate model, and 3) using the Multi-

model LQR algorithm with both the inaccurate model and the trajectory. As can be

seen, both pure open-loop and LQR with the inaccurate model fail to control the sys-

tem, but Multi-model LQR is able to reliably accomplish the control task. Figure 5.2

and Table 5.1 similarly show the total cost achieved by each of the methods, averaged

over 100 runs. Although open loop and inaccurate LQR fail at different points, they

are never able to successfully swing and balance the pole, while Multi-model LQR

performs comparably to LQR using the actual model of the system dynamics by nat-

urally interpolating between the two methods in order to best control the system.

In the figure we also show the error of a hand-tuned switching policy that switches

between purely model-based and open-loop control; despite exhaustive search to find

CHAPTER 5. MIXED CLOSED-LOOP/OPEN-LOOP CONTROL 101

50 100 150 200 250 300 350 400 450 500 550
0

10

20

30

40

50

60

70

80

90

100

Time

A
ve

ra
ge

 to
ta

l c
os

t

LQR, true model

Multi−model LQR

Hand−tuned switching controller

Open Loop

LQR, GP Model

LQR, inaccurate Model

Figure 5.2: Average total cost on cart-pole task, versus time. Shaded regions indicate
95% confidence intervals.

the optimal switch points, the method still performs worse here than Multi-model

LQR.

In Figure 5.2, we also compare to a Gaussian process (GP) model (see, e.g. (Ras-

mussen and Williams, 2006) for detailed information about Gaussian processes) that

attempted to learn a better dynamics model by treating the inaccurate model as

the “prior” and updating this model using state transitions from the desired trajec-

tory. However, the resulting model performs no better than LQR with the inaccurate

model. We emphasize that we are not suggesting that Gaussian processes cannot

model this dynamical system — they can indeed do so quite easily given the proper

training data. Rather, this shows that the desired trajectory alone is not sufficient

to improve a GP model, whereas the Multi-model LQR algorithm can perform well

using only these two inputs; this is an intuitive result, since observing only a single

trajectory says very little about the state and control derivatives along the trajectory,

which are ultimately what is needed for good fully LQR-based control. Indeed, we

CHAPTER 5. MIXED CLOSED-LOOP/OPEN-LOOP CONTROL 102

have been unable to develop any other controller based only on the inaccurate model

and the desired trajectory that performs as well as Multi-model LQR.

5.3.2 Extreme Autonomous Driving

Finally, in this section we present our chief applied result of the chapter, an application

of the algorithm to the task of extreme autonomous driving: accurately sliding a car

sideways into a narrow parking space. Concurrent to this work, we have spent a

great deal of time developing an LQR-based controller for “normal” driving on the

car, based on a non-linear model of the car learned entirely from data; this controller is

capable of robust, accurate forward driving at speeds up to 70 mph, and in reverse at

speeds up to 30 mph. However, despite significant effort we were unable to successfully

apply the fully LQR-based approach to the task of autonomous sliding, which was

one of the main motivations for this current work.

Briefly, our experimental process for the car sliding task was as follows. We pro-

vided to the system two elements; first we learned a driving model for “normal”

driving, learned with linear regression and feature selection, built using about 2 min-

utes of driving data. In addition, we provided the algorithm an example of a human

driver executing a sideways sliding maneuver; the human driver was making no at-

tempt to place the car accurately, but rather simply putting the car into an extreme

slide and seeing where it wound up. This demonstration was then treated as the

target trajectory, and the goal of the various algorithms was to accurately follow the

same trajectory, with cones placed on the ground to mark the supposed location of

nearby cars.

For this domain, we learned domain parameters needed by the Multi-model LQR

algorithm (in particular, the covariance terms for the inaccurate and open-loop mod-

els, plus the ρ term) from data of a few executions of the sliding maneuver on the real

system. To reduce the complexity of learning the model variances, we estimated the

covariance terms as follows: for the inaccurate model we estimated a time-varying

(but state and control independent) estimate of the variance by computing the error

CHAPTER 5. MIXED CLOSED-LOOP/OPEN-LOOP CONTROL 103

of the model’s predictions for each point along the trajectory, i.e.,

et = (st+1 − f1(st, ut))(st+1 − f1(st, ut))
T

then averaged these (rank-one) matrices over a small time window to compute the

covariance for time t. It is possible to let this term depend on the time index alone

because, since we are executed a time-indexed trajectory, the time index itself also

implies the state and control that the system should be in; thus, by looking at how well

the inaccurate model predicts the trajectory, we can develop a good estimate of the

model’s variance along this trajectory without attempting to estimate its variance over

the entire space (a challenging task, as much of the space is never experienced by the

system, and the model’s variance would therefore be difficult to model). For the open-

loop trajectory model, we employ the opposite approach, and learn a state and control

dependent (but time independent) estimate of the covariance of the form Σ2(st, ut) =

(w1‖δut‖
2 + w2‖δst‖

2 + w3) I, where we learned the parameters w1, w2, w3 > 0 via

least-squares by executing the open-loop maneuver one again from a slightly different

starting point, and observing how the two trajectories diverged; this model captures

the intuition that the variance of the open-loop model increases for points that are

farther from the desired trajectory, but that this divergence does not depend on where

we are along the trajectory (i.e., we assume that the true stochasticity of the world

is constant along the trajectory). Finally we selected ρ = 1 due to the fact that the

system rarely demonstrates extremely unstable behavior, even during the slide.

Figure 5.3 shows snapshots of the car attempting to execute the maneuver un-

der the three methods of control: open-loop, pure LQR, and our Multi-model LQR

approach integrating both the inaccurate model and the trajectory. Videos of the

different slides are available at: http://ai.stanford.edu/~kolter/icra10car. It

is easy to understand why each of the methods perform as they did. Purely open-loop

control actually does perform a reasonable slide, but since it takes some distance for

the car to build up enough speed to slide, the trajectory diverges significantly from

the desired trajectory during this time, and the slide slams into the cones. Pure LQR

CHAPTER 5. MIXED CLOSED-LOOP/OPEN-LOOP CONTROL 104

Figure 5.3: Snapshots of the car attempting to slide into the parking spot using
(top) open-loop control, (middle) pure LQR control, and (bottom) Multi-model LQR
control. The desired trajectory in all cases is to slide in between the cones.

0 10 20 30 40 50 60 70
−15

−10

−5

0

5

10

15

Desired Trajectory
Open Loop

10 20 30 40 50 60 70
−15

−10

−5

0

5

10

15

Desired Trajectory
LQR, inaccurate model

0 10 20 30 40 50 60 70
−15

−10

−5

0

5

10

15

Desired Trajectory
Multi−Model LQR

0 2 4 6 8 10 12 14 16 18 20
−15

−10

−5

0

5

Desired Trajectory
Open Loop

0 2 4 6 8 10 12 14 16 18 20
−15

−10

−5

0

5

Desired Trajectory
LQR, inaccurate model

0 2 4 6 8 10 12 14 16 18 20
−15

−10

−5

0

5

Desired Trajectory
Multi−Model LQR

Figure 5.4: Plots of the desired and actual trajectories followed by the car under
(left) open-loop control, (middle) pure LQR control, and (bottom) Multi-model LQR
control. Bottom plots show a zoomed-in view of the final location.

control, on the other hand, is able to accurately track the trajectory during the back-

ward driving phase, but is hopeless when the car begins sliding: in this regime, the

LQR model is extremely poor, to the point that the car executes completely differ-

ent behavior while trying to “correct” small errors during the slide. In contrast, the

Multi-model LQR algorithm is able to capture the best features of both approaches,

CHAPTER 5. MIXED CLOSED-LOOP/OPEN-LOOP CONTROL 105

resulting in an algorithm that can accurately slide the car into the desired location.

In particular, while the car operates in the “normal” driving regime, Multi-model

LQR is able to use its simple dynamics model to accurately control the car along the

trajectory, even in the presence of slight stochasticity or a poor initial state. How-

ever, when the car transitions to the sliding regime, the algorithm realizes that the

simple dynamics model is no longer accurate, and since it is still very close to the

target trajectory, it largely executes the open-loop slides controls, thereby accurately

following the desired slide. Figure 5.4 shows another visualization of the car for the

different methods. As this figure emphasizes, the Multi-model LQR algorithm is both

accurate and repeatable on this task: in the trajectories shown in the figure, the final

car location is about two feet from its desired location.

5.4 Summary

This chapter presented a method for combining inaccurate models of the system with

trajectories, previously observed demonstrations of certain behaviors, in order to ob-

tain better performance than what is possible by using either element in isolation. In

particular, we present an algorithm that uses a variance-based criterion to determine

how to properly weight the different models, which has the effect of executing largely

closed-loop controls when the system is in a well-modeled states, but open-loop con-

trols when the system is in a state that is poorly modeled. We evaluate the approach

on a cart-pole swinging task, and on the challenging task of powersliding a full-sized

autonomous car into a parking spot. Our performance on this latter task represents

the state of the art in terms of accurately placement of an autonomous full-sized car

in this type of maneuver.

The major drawback of our proposed approach is that in order to achieve such

performance without an accurate model of the system, we do require that we have

previously observed behavior that accomplishes the desired goal for the control task.

For the car, for instance, we require that we have previously seen a sliding maneuver

(though not necessarily one executed in a precise manner). In the event that the

system enters a state where there is no accurate model, and if the algorithm does not

CHAPTER 5. MIXED CLOSED-LOOP/OPEN-LOOP CONTROL 106

have a demonstration of any behavior that would perform well when executed open-

loop, then the variance both for any models and for all trajectories would be very

large, resulting in behavior that would almost certainly not accomplish the desired

task. More broadly speaking, our algorithm will not plan entirely new trajectories

in difficult-to-model regions, it will simply use trajectories is has already seen in

conjunction with the models that are accurate only in certain parts of the state space.

Despite this restriction, the algorithm can achieve impressive performance when it is

given such trajectories at its disposal.

Chapter 6

Application to the LittleDog Robot

One of the primary application domains in the previous chapters has been the Lit-

tleDog robot, a quadruped robot built to traverse challenging terrain. While the

algorithms we have discussed were crucial to their respective tasks on the LittleDog

(learning dynamic maneuvers and trotting), there are naturally many other compo-

nents to the system that were crucial to the overall performance of the robot. This

chapter provides a general overview of our work on the LittleDog robot, highlight-

ing several additional elements that were needed to achieve good performance, and

demonstrating the complete system crossing a wide variety of terrains. As such, the

presentation in this chapter differs from the previous three chapters. While the over-

all notion of inaccurate modeling is certainly a prevailing theme in the LittleDog

robot (indeed, the difficulty of creating an accurate physical simulator of the robot

has affected virtually all our design choices on this platform), in this chapter we are

not focusing on a particular algorithm based upon the use of inaccurate modeling.

Rather, the material in this chapter can be viewed as a case study in developing a full

control architecture for a system where fully accurate modeling is not feasible. We

will particularly highlight areas where the inaccuracy of our models has influenced

our design decisions.

107

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 108

6.1 Introduction to Legged Locomotion

Legged robots offer a simple promise: the potential to navigate areas inaccessible to

their wheeled counterparts. While wheeled vehicles may excel in regards to speed and

fuel efficiency, they are only able to access about one half of the earth’s land mass

(Raibert, 1986). Contrast this with legged animals, which are able to access virtually

100% of the earth’s land surface. Thus, to enable robotic applications in a variety

of rugged terrains, such as search and rescue operations in hard-to-access locations,

legged locomotion is a promising approach. However, while there has been a great

deal of work on legged locomotion, current legged robots still lag far behind their

biological cousins in terms of the ability to navigate challenging, previously unseen

terrain.

In this chapter we specifically consider the task of navigating a quadruped robot

over a variety of challenging terrain, including terrain that the robot has not pre-

viously seen until execution time. At run-time, we assume that the robot obtains

a model of the terrain to cross, and that we have very accurate localization during

execution; thus, the problem we are focusing on is the planning and control tasks of

quadruped locomotion in highly irregular terrain.

The central methodological theme in this chapter is the ubiquitous use of rapid

recovery and replanning methods. Often times robotic control tasks are framed as

lengthy search problems, where we use a model of the system to explore possible con-

trol sequences to move the system from its initial state to the goal; probabilistic road

maps (Kavraki et al., 1996) and rapidly-exploring random trees (LaValle and Kuffner,

1999) are classic examples of such methods. However, much like the control methods

we have discussed previously, these algorithms are best applied when we have an ac-

curate model of the system; if the model is not accurate, then the robot will likely

deviate from the plan as it executes its motion, and due to the computationally inten-

sive planning process, the system cannot quickly replan a new trajectory. Instead, we

designed our system to allow for some degree of failure in the robot’s execution, and

focus on extremely fast replanning methods (within one or two control cycles) that

would allow the robot to continue even after most failures. This strategy mitigates

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 109

the harm that inaccurate models may cause in the planning process, and as we will

show, we are able to use very inaccurate models to successfully and reliably navigate

over challenging terrain.

6.2 Related Work

6.2.1 Background on legged locomotion

Research in legged robotics has a long history, dating back to the beginning of modern

robotics. One of the first major achievements in legged robots was a human-operated

robot developed by GE in the 60s (Mosher, 1968). Despite the fact that the robot

relied on a human driver, it was capable of walking, climbing over small obstacles,

and pushing large obstacles such as trucks.

The mathematical study of autonomous legged robot gaits began short there-

after with the work of McGhee and others (McGhee, 1967; McGhee and Frank, 1968;

McGhee, 1968). This work focused mainly on what is known as static gaits, gaits

where the robot maintains static stability, which involves keeping its center of grav-

ity (COG) within the support triangle formed by the non-moving feet; thus, for a

quadruped, a static gait implies that only one leg can be moved at a time, with the

remaining three resting on the ground. McGhee implemented many of these princi-

ples in a six-legged walking machine that was able to navigate over a nominal amount

of roughness in the terrain (McGhee, 1985). Another milestone in the development of

legged robots came with a series of robots (known as the TITAN robots), developed

by Hirose et al. (1984), that could walk up stairs, again using a static gait.

Another vein of research that began at this time was the work by Raibert on

balancing robots (Raibert, 1986). Unlike the static gaits described previously, these

robots were capable of dynamic gaits, where fewer than three legs were on the ground

at a time, including the extreme case of a single hopping leg, though at the time

these robots only operated on flat ground. Recent work in this vein includes the

KOLT robot (Nichol et al., 2004), the Scout II robot (Poulakakis et al., 2005), and

the BigDog robot (Raibert et al., 2008); some of these robots are now able to navigate

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 110

over ground with significant irregularities. However, the obstacles that these robots

are able to navigate over are still small (relative to the size of the robot) compared

to what we consider in this work.

Returning to static gait legged robots, a number of system have been built in recent

years. The Ambler (Krotkov et al., 1995) and Dante II (Bares and Wettergreen,

1999) robots were large-scale legged robots built for testing planetary exploration

techniques and for volcanic exploration respectively. Although sometimes partially

operated by humans, these robots had modes of fully autonomous behavior in rugged

environments, and represented another significant improvement in the state of the

art for the time.

The Sony Aibo robot, and in particular the RoboCup competitions (which involve

playing soccer games with teams of small quadruped robots), have spawned a great

deal of work on learning fast and efficient gaits (Hengst et al., 2002; Hornby et al.,

2005; Kohl and Stone, 2004), as well as more high-level work on robot cooperation

and strategy. Many of these systems explicitly focused on learning techniques to

improve the performance of the robot. However, these works have focused mainly on

locomotion over flat ground, due to both the physical capabilities of the Aibo and to

the fact that the RoboCup involved moving only over flat ground.

Another branch of research in quadruped locomotion has focused on so-called

“Central Pattern Generators” or CPGs. This work is inspired by biological evidence

that animals regulate locomotion by relatively simple, reflexive systems located in the

spinal chord rather than the brain (Grillner, 1985). CPGs are neural-like control laws

that produce period behavior to drive leg motion, a technique that can be particularly

well suited to robots with built-in compliant mechanisms. A number of robots have

been built using such behavior, including some which can adapt to some degree of

roughness and irregularity in the terrain (Fukuoka et al., 2003; Kimura et al., 2007).

However, again these robots typically can only handle a relatively small amount of

irregularity in the terrain, not the large obstacles that we consider.

Finally, as we mentioned briefly in the introduction, a separate thread of research

in legged locomotion has been to develop mechanical systems that are naturally much

more robust to irregular terrain, or specifically suited to a certain type of challenging

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 111

Figure 6.1: The LittleDog robot, designed and built by Boston Dynamics, Inc.

locomotion. Such work includes the Rhex hexapedal robot (Saranli et al., 2001),

which uses six flexible legs to rapidly move over relatively large obstacles, and the

RiSE climbing robot (Saunders et al., 2006), which uses special leg and foot design to

scale vertical surfaces. These robots can achieve very impressive locomotion, but their

design strategy is roughly orthogonal to our work: these robots demonstrate that

clever mechanical design, even with largely open-loop behavior, can achieve good

performance in a variety of scenarios. However, these robots can fail in scenarios

where careful sensing and foot placement are a necessity, which is the focus of our

work.

6.2.2 The Learning Locomotion program and LittleDog robot

The robotic platform for the DARPA Learning Locomotion program was the Little-

Dog robot, shown in Figure 6.1, a small quadruped designed and built by Boston

Dynamics, Inc. While the robot underwent a sequence of small upgrades during the

program, at all points each team working in the program had access to the same

hardware system, so that the capabilities of the different systems resulted entirely

from the different software developed by the different teams.

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 112

The LittleDog robot is a small (roughly 3kg) robot, with a 40cm long body and

15 cm legs. Each leg has three degrees of freedom, two hip joints and a knee joint,

that together allow for free placement in 3D space, subject to the kinematic limits

of the joints. The hip motors provide 1.47 Nm of torque, while the knee provides

1.02 Nm, enough power to move the robot relatively quickly in static gaits, but not

enough power to truly jump off the ground; due to this constraint, the majority of

the program focused either on static gaits (keeping three feet on the ground at one

time), or limited dynamic gaits, such as a trot and two-legged jumps, rather than the

more dynamic “jumping” gaits exhibited, for example, by the BigDog robot (Raibert

et al., 2008).

Control for the robot consisted of two control cycles. An internal processor on

the robot runs a simple PD controller at 500 hz, applying torques to achieve specified

joint angles. Meanwhile, a separate workstation computer runs a control loop at

100 hz, wirelessly sending commands to the robot. While the workstation may send

either PD angle setpoints (which are then executed by the aforementioned on-board

PD controller) or actual motor torques, all teams that we are aware of primarily used

the PD setpoint interface, as the higher bandwidth of the on-board control loop then

allowed for quicker feedback control of the robot.

Although the robot has some degree of onboard sensing (an internal IMU, foot

force sensors, and an IR proximity sensor) most of the perception for the Learning

Locomotion project was performed offboard. The robot operates in a Vicon motion

capture system, with retro-reflective markers on the dog’s body and terrain. This

gives the system real-time estimates of the robot’s pose in relation to the terrain. To-

gether with scanned 3D models of the terrain and joint encoder readings, this system

provides a very accurate estimate of the robot’s state, even without any advanced

filtering techniques. Such “ideal” perception is an admitted benefit for these robots,

which would not be present to such a high degree in a real quadruped walking out-

doors, but the goal of the Learning Locomotion program was to focus on the planning

and control elements of locomotion, leaving the challenging perception task to other

work. However, in addition and separate from the official government tests of the pro-

gram, we have conducted extensive experiments using only an onboard stereo camera

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 113

Figure 6.2: Typical quadruped locomotion task: navigate robot over terrain to goal.

for vision. We will present these results briefly in a later section, but they suggest

that many of the techniques developed for this work by both ourselves and other

teams are indeed applicable to realistic situations where the robot has only onboard

sensing.

6.3 A software architecture for quadruped loco-

motion

Our goal for quadruped locomotion is to execute a sequence of joint torques (or,

if using the PD controller, desired joint angles) that move the robot from its initial

location to the goal. A typical setup of the robot and terrain is pictured in Figure 6.2.

Given the complex obstacle shapes and high dimensionality of the state space (36-D,

including position and velocity variables), naively discretizing the state space would

not scale. Instead, we develop a hierarchical control approach, which decomposes the

problem into several layers.

Figure 6.3 shown the overall architecture of our system. We will spend the rest

of this section describing the different components of this system in detail, but from

a high level the process is fairly straightforward. Before execution, the system first

plans an approximate route over terrain. Next, in an online manner, the system

selects which type of gait to use: a static walk, a trot, or a specialized maneuver

policy. For the static walk and trot gaits, we then plan footsteps for the robot, plan

motion paths for the body and feet, and execute these plans using closed-loop control.

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 114

Figure 6.3: Hierarchical software architecture for quadruped planner and controller.

6.3.1 Route Planner

The goal of the route planner is to plan an approximate path for the robot’s body

across the terrain. The actual path followed by the robot will of course deviate from

this planned path (for example, when using a static walking gait, the robot’s actual

body path will be adjusted to maintain stability of the robot), but this initial route

allows the robot to better focus its search for footsteps or maneuvers.

A overview of the route planning process is shown in Figure 6.4. The method

uses a route cost map of the terrain that quantifies the goodness or badness of the

robot’s body center being at a specific location on the terrain. Given this body cost

map, the route planner uses value iteration (using a finely discretized state, with ≈1

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 115

Figure 6.4: Overview of route planning element.

million states) to find a 2D path across the terrain. Since the state transitions are

very sparse, we can solve this planning task using value iteration in an average of

five seconds.1 An advantage of using value iteration for this task, which relates to

1Here and in the remainder of the chapter, all run times correspond to run times on the
government-provided host machine, running an Intel Xeon processor at 3.0 Ghz

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 116

the aforementioned “rapid replanning” philosophy, is that we can compute the value

function once, prior to execution, and subsequent replanning then is extremely fast;

if, during execution, the robot falls significantly off its desired path, we simply replan

a new route using this value function, and continue execution. We also note that

the value iteration is the only part of the planning process that is run offline: all

subsequent elements are run as the robot is crossing the terrain, and thus execution

time is of paramount importance.

The efficacy of this approach rests chiefly on the quality of the cost map: since we

are not checking kinematic feasibility along the path, the process has the potential

to lead to a “dead end” — in contrast, global footstep planning techniques (e.g.,

(Chestnutt et al., 2003)) can guarantee a full solution at the footstep level, but are

correspondingly more computationally expensive. However, we have found that for

reasonable cost maps, the resulting routes work very well in practice, guiding the robot

over the most reasonable portions of the terrain, thus speeding up planning without

significant negative effects. Of course, manually specifying such a cost function is very

difficult in practice, so instead we rely on a learning approach to learn an approximate

cost map as a linear function of certain features that describe the center location;

which we will discuss at greater length in Section 6.6.

6.3.2 Gait Selector

The next step in the execution process is to select, before each step, a gait to use for

the current situation, either a slow static walk (for highly irregular terrain), a faster

dynamic trot (for relatively flatter terrain), or a maneuver specialized to a specific

class of obstacles. Although preliminary experiments indicate that the best gait type

can be accurately predicted using a learning algorithm (where the input is a local

height map of terrain near the robot, and the output is the type of gait or maneuver

to execute), we did not use such an approach for the official Learning Locomotion

submission. Because the project stipulated that our software was provided, a priori,

with terrain IDs that indicated the terrain type, we were able to devise a fairly small

set of rules based upon the terrain ID and height differential of the robot’s legs that

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 117

were very accurate in predicting the best gait type.

6.3.3 Static Walking Gait

For highly irregular terrain, the robot typically uses a static walking gait, a relatively

slow mode of locomotion that moves one leg at a time and maintains static stability

by keeping the robot’s center of gravity (COG) within the supporting triangle formed

by the remaining feet. However, even given the desired route from the higher levels

of the system, robustly executing a static walking gait remains a challenging task,

and so we once again decompose the problem into multiple levels: first we plan an

upcoming footstep for the robot; we then plan trajectories for the moving foot and

body that move the desired foot while maintaining static stability of the robot; finally,

we execute this plan on the robot using a controller that constantly checks for loss of

stability, and recovers/replans when necessary.

Walking Gait Footstep Planner

To plan footsteps for the static walk, we use a common fixed repeating sequence

of leg movements: back-right, front-right, back-left, front-left. In addition to being

the gait typically by biological animals during static walking, it has the benefit of

maximizing the kinematically feasible distance that each foot can move — for more

detailed discussion of the benefits of this pattern, see (McGhee and Frank, 1968).

The planning process is as follows: to take a step, the system first averages the

current positions of the four feet to determine the “center” of the robot — in quota-

tions because of course the true COG need not be located at this point; this center

is merely used for planning purposes. Then, we find the point some distance dbody

ahead of this center in the route line, and find the “home” position of the moving

foot relative to this new point (the “home” position here just denotes a fixed position

for each foot relative to the robot’s center, in a box pattern). Finally, because this

precise location may coincide with a poor location on the terrain, we search in a box

around this location and find the footstep with the lowest cost. Again, the cost here

quantifies the goodness of the terrain, this time at the individual footstep level, and

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 118

Figure 6.5: Overview of the footstep planning process.

we will describe in Section 6.6 how we learn this footstep cost simultaneously with the

body cost mentioned above. The complete planning system is illustrated in Figure

6.5.

Finally, because selecting only one footstep at a time can lead to overly myopic

behavior, we use a branching search of some fixed horizon, then choose the footstep

that leads to the least total cost To ensure that the search is tractable, we use a

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 119

relatively small branching factor (typically 3 and 4), and perform a greedy search at

each step to find the 3 or 4 best points in the search box that are not within 3 cm

of each other. Because the process can still be somewhat computationally intensive,

we plan the robot’s next step in a separate thread while it executes its current step

(assuming that the current step will be achieved). In cases where the step is not

achieved and we need to quickly replan anew, then we use just a single step horizon

in the search.

The advantage of this approach is that each foot movement can be planned inde-

pendent of any previous footsteps: all that determines the next footstep is the moving

foot and the mean of the four current footsteps. Despite it’s simplicity, it is possible

to show that this simple method will quickly converge to a symmetric pattern that

staggers in the footsteps in an optimal manner. Because we check kinematic feasibil-

ity and collisions only at the beginning and end of each proposed footstep, there is

some chance that no kinematically feasible, non-colliding path exists between these

positions, though as before we find that this is rarely the case in practice.

Walking Gait Foot/Body Motion Planner

The foot/body motion planner is tasked with determining a sequence of joint angles

that achieve the planned footstep while maintaining static stability of the robot.

Motion planning in such high dimensional state spaces is typically a challenging and

computationally intensive problem in robotics. However, following our theme of fast

replanning necessitates a very quick method for planning such motions; if the robot

deviates from its desired trajectory and we need to replan its motions, then we do

not want to wait for a slow planner to finish executing before we begin moving again.

Thus, as part of our system we developed a novel motion planning approach, based

on convex optimization and cubic splines, that enables us to quickly (in a matter of

milliseconds, on the same time scale as the control loop) plan motions that satisfy

the above constraints. However, we defer the discussion of this method until Section

6.5.

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 120

Walking Gait Controller

Finally, after planning the precise joint motions that will move the foot to its desired

location while maintaining static stability, the final task of the walking gait is to

execute these motions on the robot. Due to the challenging nature of the terrains we

consider, using PD control alone is highly unreliable: regardless of how well we plan,

and regardless of how well the individual joints track their desired trajectories, it is

almost inevitable that at some point the robot will slip slightly and deviate from its

desired trajectory. Therefore, a critical element of our system is a set of closed-loop

control mechanisms that detect failures and either stabilize the robot along its desired

trajectory or re-plan entirely. In particular, we found three elements to be especially

crucial for the walking gait: 1) stability detection and recovery, 2) body stabilization,

and 3) closed-loop foot placement. Again, to simplify the discussion here we defer

discussion of these elements until Section 6.4.

6.3.4 Trot Gait

When the terrain is flatter, a static walking gait is unnecessary, and the robot can

move much faster using a dynamic trotting gait, which moves two feet at a time.

Our approach to a trot gait differs from many other approaches in that we do not

explicitly try to maintain even some measure of dynamic stability, but merely learn

a gait that tends to balance well “on average.” As with the walking gait, the trot

gait is also subdivided hierarchically into a footstep planner, a joint planner, and a

controller, but due to the nature of the trot (specifically the fact that we will only

execute the gait on relatively flat ground), these elements are considerably simpler

than for the walking gait, so we describe them only briefly.

The trot footstep planner operates in the same manner as the walking footstep

planner, with the exception that we are now planning two moving feet at a time

rather than one. We again use a fixed alternating foot pattern, this time alternating

moving back-right/front-left and back-left/front-right. To plan footsteps we again use

the current foot locations to determine the effective center of the robot, then find the

point some distance dbody ahead on the route, find the “home” position of the moving

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 121

feet relative to this new point, and search in a box around these desired positions to

find the foot location with lowest cost. Further differences from the walking footstep

planner is that 1) we use a smaller dbody, to take smaller steps, 2) we don’t search

in as large a box as for the walking gait and 3) we don’t use any receding horizon

search, but simply use the minimal greedy one-step costs. As with the walking gait,

this process will quickly converge to a symmetric trot pattern, regardless of the initial

configuration of the feet.

The joint planner and controller for the trot is similarly simplified from the static

walk. We move the moving feet in ellipses over the ground, and use inverse kine-

matics to determine the joint angles that move the feet along their desired location,

while linearly interpolating the body position between the center locations for the

different footsteps. The controller in this case uses PD control alone; indeed, we have

found that closed-loop mechanisms actually degrade performance here, since the trot

is quick enough such that the natural periodic motion will tend to stabilize the robot

and interrupting this periodic motion with additional closed-loop mechanisms typi-

cally causes more harm than good. The one challenging aspect to designing the trot

controller is to position the COG in a manner that maintains balance as much as

possible; this is the task we discussed at length in Chapter 4, so we will not discuss

it further here.

6.3.5 Specialized Maneuvers

Finally, in addition to the static walk and dynamic trot, we have developed a num-

ber of specialized maneuvers, each intended to cross some specific class of obstacles.

While these were admittedly specialized to the types of obstacles prescribed by the

Learning Locomotion project (for instance, steps or gaps), they are general enough

to cross a wide variety of obstacles within their intended class. We use a total of four

specialized maneuvers for the Learning Locomotion terrains: a front leg jump (for

quickly jumping both front legs onto a step or over a gap), a stair climb (for climbing

the back legs onto a stair), a gap cross (for sliding the back legs over a gap), and a

barrier cross (for bringing the back legs over a barrier).

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 122

The challenge for the dynamic maneuvers, such as the front jump, is devising a

policy that properly executes the maneuvers without falling forward or backward;

we learned the dynamic maneuvers using the Policy Search with Signed Derivative

algorithm, as described in Chapter 3, so again we don’t discuss these further here.

The non-dynamic specialized maneuvers, such as the stair climb or gap cross, were

manually designed to cross their respective obstacles while maintaining static stability

of the robot, usually by using the robot’s body itself to balance. While an important

part of our overall system, these maneuvers were fairly easy to hand-tune, as the

static motion made them less sensitive to parameter choice, and thus we also don’t

discuss them further.

6.3.6 Introduction to Rapid Replanning Methods

This section has described our software system for the quadruped robot, but we

deferred discussion of several novel methods, related to our central theme of rapid

replanning, that we have developed over the course of this program. In the remainder

of this chapter we will present each of these methodologies. In particular, we present

and analyze three approaches that we have developed over the course of the program:

1) a method for recovery and stabilization at the control level, 2) a cubic spline

optimization approach to fast foot and body motion planning, and 3) a method for

Hierarchical Apprenticeship Learning, used to learn the cost functions for route and

footstep planning.

6.4 Recovery and Stabilization Control

As discussed in the previous section, even after planning a full trajectory for the

foot or leg, it is undesirable to simply execute these motions open-loop. During the

natural course of execution, the robot’s feet may slip and possibly loose stability.

Thus, we have implemented a number of low-level recovery and stabilization methods

that continuously monitor the state of the robot and try to either maintain the current

plan, or notify the system when it must replan entirely. We discuss three elements:

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 123

1) stability detection and recovery, 2) body stabilization, and 3) closed-loop foot

placement.

6.4.1 Control Elements

Stability Detection and Recovery. Recall that (ignoring friction effects, which do

not play a major role in stability for the LittleDog) the robot is statically stable only

if the projection of the COG onto the ground plane lies within the triangle formed

by the supporting feet. If the robot slips while following its trajectory, the COG can

move outside the supporting triangle, causing the robot to tip over. To counteract

this effect, we compute the current support triangle at each time step, based on the

current locations of the feet as determined by state estimation. If the COG lies

outside this triangle, then we re-run the walking gait foot and body motion planner.

This has the effect of lowering all the robot’s feet to the ground, then re-shifting the

COG back into the inset support triangle.

Body Stabilization. While sometimes the recovery procedure is unavoidable,

as much as possible we would like to ensure that the COG does not move outside the

supporting triangle, even in light of minor slips. To accomplish this, we adjust the

commanded positions of the supporting feet so as to direct the COG toward its desired

trajectory. In particular, we multiply the commanded positions of the supporting feet

by a transformation that will move the robot’s COG from its current position and

orientation to its desired position and orientation (assuming the supporting feet are

fixed to the ground).

More formally, let Tdes be the 4× 4 homogeneous transformation matrix specify-

ing the desired position and orientation of the robot relative to the world frame, and

similarly let Tcur be the homogeneous transformation specifying the current position

and orientation of the robot relative to the world frame. In addition, let feet de-

note the default commanded positions of the supporting feet expressed in the robot’s

frame of reference, based on the desired trajectory for the COG. If we transform the

commanded positions for the feet by

T−1
desTcurfeet (6.1)

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 124

then (assuming the supporting feet remain fixed) this would move the COG to its de-

sired position and orientation. In practice, to avoid oscillations we apply the smoothed

command

(1− α)feet+ αT−1
desTcurfeet (6.2)

for some 0 < α < 1 (in our experiments we found α = 0.1 to be a good value).

This causes the robot’s COG to move gradually to track the desired trajectory, even

if the robot slips slightly. In addition, we project the desired position Tdes into the

current supporting triangle. During our development we found this approach to be

more robust than attempting to move the supporting feet individually to stabilize the

body, as our method keeps intact the relative positions of the supporting feet.

Closed-loop Foot Placement. Finally, we want to ensure that the moving foot

tracks its desired trajectory as closely as possible, even if the body deviates from its

desired path. To accomplish this, at each time step we compute the desired location of

the foot along its (global) trajectory, and use inverse kinematics based on the current

pose of the robot’s body to find a set of joint angles that achieves the desired foot

location. This is particularly important in cases where the robot slips downward. If

the robot’s body is below its desired position and we merely execute an open loop

trajectory for the moving foot, then the foot can punch into the ground, knocking

the robot over faster than we can stabilize it. Closed-loop foot tracking avoids this

problem.

It may seem as if there are also cases where closed-loop foot placement could

actually hinder the robot rather than help. For example, if the robot is falling, then

it may be best to simply put its foot down, rather than attempt to keep its foot along

the proper (global) trajectory. However, in our experience this nearly always occurs

in situations where the recovery procedure mentioned previously will catch the robot

anyway, so the closed-loop mechanism rarely affects the system negatively in practice.

6.4.2 Experimental Evaluation

To evaluate the three methods proposed above, we conducted experiments on different

terrains of varying difficulty. Pictures of the terrains and their corresponding height

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 125

Terrain # 1 2 3 4
Max Height 6.4 cm 8.0 cm 10.5 cm 11.7 cm

Picture

Height
map

Table 6.1: The four terrains used for evaluation of recovery and stabilization proce-
dures.

maps are shown in Table 6.1. We evaluated the performance of our system with and

without each element described above. In addition, we evaluated the performance of

the system with none of these elements enabled. As shown in Table 6.2, the controller

with all elements enabled substantially outperforms the controller when disabling any

of these three elements. This effect becomes more pronounced as the terrains become

more difficult: Terrain #1 is easy enough that all the controllers achieve 100% success

rates, but for Terrains #3 and #4, the advantage of using all the control elements is

clear. Statistically, over all four terrains the full controller outperforms the controller

with no recovery, with no stabilization, with no closed-loop foot placement, and with

none of these elements in terms of success probability with p-values of p = 2.2×10−13,

p = 0.0078, p = 0.0012, and p = 5.8 × 10−11 respectively, via a pairwise Bernoulli

test.

Subjectively, the failure modes of the different controllers are as expected. With-

out the stability detection and recovery, the robot frequently falls over entirely after

slipping a small amount. Without body stabilization, the robot becomes noticeably

less stable during small slips, which sometimes leads to falls that even the recovery

routine cannot salvage. Without closed-loop foot placement, the feet can punch into

the ground during slips, occasionally flipping the robot. One interesting effect is that

without recovery, the controller actually performs worse with body stabilization and

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 126

Terrain All w/o Rec. w/o Stab. w/o CLF None
1 100% 100% 100% 100% 100%
2 100% 60% 95% 95% 55%
3 95% 25% 55% 75% 35%
4 95% 0% 75% 85% 35%

Total 97.5% 46.25% 81.25% 88.75% 56.25%

Table 6.2: Success probabilities out of 20 runs across different terrains for the con-
troller with and without recovery, body stabilization, and closed-loop foot placement.

closed loop foot movement enabled, especially on the more challenging terrains. This

appears to be due to the fact that when the robot falls significantly (and makes no

attempt to recover) both the body stabilization and closed-loop foot placement at-

tempt to make large changes to the joint angles, causing the robot to become less

stable. However, with recovery enabled the robot never strays too far from its desired

trajectory without attempting to re-plan; in this case the advantage of using the body

stabilization and closed-loop foot placement is clear from the experiments above.

6.5 Motion Planning via Cubic Spline Optimiza-

tion

We now return to the problem of the static walk foot/body motion planner, planning

full foot and body trajectories that move the moving foot from its initial to desired

location while maintaining static stability of the robot. In order to plan smooth

motions, we use cubic splines to parametrize these trajectories, a common approach

in robotic applications (Lin et al., 1983). However, the typical usage of cubic splines

within motion planning algorithms suffers from a number of drawbacks. Typically,

one uses a standard motion planning algorithm, such as a randomized planner, to

generate a sequence of feasible waypoints, then fits a cubic spline to these waypoints.

However, due to the stochastic nature of the planner, these waypoints often do not

lead to a particularly nice final trajectory. Trajectory optimization techniques (Betts,

1998) can help mitigate this problem to some degree, but they usually involve a slow

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 127

search process, and still typically do not take into account the final cubic spline form

of the trajectory.

The basic insight of the method we develop here is that if we initially parametrize

the trajectory as a cubic spline, then in many cases we can accomplish both the

planning and trajectory fitting simultaneously. That is, we can directly optimize the

location of the cubic spline waypoints while obeying many of the same constraints

(or approximations thereof) required by a typical planning algorithm. Specifically,

we show how to plan smooth task-space trajectories — that is, trajectories where

we care primarily about the position of the robot’s end effector — while maintaining

kinematic feasibility, avoiding collision, and limiting velocities or accelerations, all

via a convex optimization problem. Convex optimization problems are beneficial in

that they allow for efficiently finding global optimums (Boyd and Vandenberg, 2004)

— this allows us to solve the planning tasks in a few milliseconds using off-the-shelf

software, suitable for real-time re-planning and control.

6.5.1 The Cubic Spline Optimization Algorithm

Cubic Splines Preliminaries

Here we review the standard methods for fitting cubic splines to a series of waypoints

output by a planner. Suppose that a planner outputs some path specified by T + 1

desired time-location pairs

(t0, x
⋆
0), (t1, x

⋆
1), . . . , (tT , x

⋆
T) (6.3)

where x⋆i ∈ Rn denotes the desired location of the robot at time ti ∈ R, specified in

task space.

Given these waypoints, there is a unique piecewise-cubic trajectory that passes

through the points and satisfies certain smoothness criteria. Specifically, we model

the trajectory between times ti and ti+1, denoted xi(t) : R→ Rn, as a cubic function

xi(t) = ai + bi(t− ti) + ci(t− ti)
2 + di(t− ti)

3 (6.4)

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 128

where ai, bi, ci, di ∈ Rn are parameters of the cubic spline. The final trajectory

x(t) : R → Rn is a piecewise-cubic function that is simply the concatenation of

these different cubic trajectories

x(t) =















x0(t) if t0 ≤ t < t1
...

xT−1(t) if tT−1 ≤ t ≤ tT

(6.5)

where we can assume that the trajectory is undefined for t < t0 and t > tT .

Given the desired waypoints, there exists a unique set of coefficients {ai, bi, ci, di}i=0,...,T−1

such that the resulting trajectory passes through the waypoints and has continuous

velocity and acceleration profiles at each waypoint.2 To compute these coefficients,

we first define the matrices x, a,b, c,d ∈ RT+1×n

x =
[

x⋆0 x⋆1 · · · x⋆T

]T

(6.6)

a =
[

a0 a1 · · · aT

]T

(6.7)

with b, c, and d defined similarly (we define T + 1 sets of parameters in order to

simplify the equations, though we will ultimately only use the 0, . . . , T−1 parameters,

as described above). Given the x matrix, we can find the parameters of the cubic

splines using the following set of linear equations

a = x (6.8)

H1b = H2x (6.9)

c = H3x+H4b (6.10)

d = H5x+H6b (6.11)

where theHi ∈ R(T+1)×(T+1) matrices depend only (non-linearly) on the times t0, . . . , tT .

The Hi matrices are somewhat complex, but are also well-known, so for brevity we

2Technically, in order to ensure uniqueness of the spline we also need to impose a constraint on
the velocity or acceleration of the endpoints, but we ignore this for the time being.

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 129

omit the full definitions here; explicit formulas for the matrices as used here are avail-

able in the appendix of (Kolter and Ng, 2009b). However, the important point to

glean from this presentation is that the parameters of the cubic splines are linear in

the desired locations x. Furthermore, the Hi matrices are all either tridiagonal or

bidiagonal, meaning that we can solve the above equations to find the parameters in

time O(T).

Cubic Spline Optimization

In this section we present our algorithm: a method for optimizing task-space cubic

spline trajectories using convex programming. As before, we assume that we are given

an initial plan, now denoted

(t0, x̂0), (t1, x̂1), . . . , (tT , x̂T). (6.12)

However, unlike the previous section, we will not require that our final cubic trajectory

pass through these points. Indeed, most of the real planning is performed by the

optimization problem itself, and the initial plan is required only for some of the

approximate constraints that we will discuss shortly; an initial “plan” could simply

be a straight line from the start location to the goal location.

The task of optimizing the location of the waypoints while obeying certain con-

straints can be written formally as

min
x

f(x)

subject to x ∈ C

where x is the optimization variable, representing the location of the waypoints,

f : R(T+1)×n → R is the optimization objective, and C represent the set of constraints

on the waypoints. In the subsequent sections, we discuss several possible constraints

and objectives that we use in order to ensure that the resulting trajectories are both

feasible and smooth. The following is not an exhaustive list, but conveys a general

idea of what can be accomplished in this framework.

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 130

Additional Variables and Constraints

Spline derivatives at the waypoints. Often we want objective and constraint

terms that contain not only the position of the waypoints, but also the velocity,

acceleration, and/or jerk (derivative of acceleration) of the resulting cubic spline.

Using (6.8) – (6.11), these terms are linear functions of the desired positions, and can

therefore be included in the optimization problem while maintaining convexity. For

instance, since ẋi(ti) = bi, we can add the constraint

H1ẋ = H2x (6.13)

and constrain the these ẋ variables. The same procedure can be used to create

variables representing the acceleration or jerk at each waypoint.

Spline position and derivatives at arbitrary times. Oftentimes we may also

want to constrain the position, velocity, etc, of the splines not only at the waypoints,

but also at the intermediate times. Using the cubic spline formulation, such variables

are also a linear function of the waypoint locations. For example, suppose we wanted

to add a variable x(t′) representing the position of the trajectory at time ti < t′ < ti+1.

Using equations (6.4) and (6.5),

x(t′) = ai + bi(t
′ − ti) + ci(t

′ − ti)
2 + di(t

′ − ti)
3. (6.14)

But from (6.8)–(6.11), ai, bi, ci and di are all linear in the desired positions x, so the

variable x(t′) is also linear in these variables. The same argument applies to adding

additional variables that represent the velocity, acceleration, or jerk at any time.3

Thus, it should be clear from the discussion above that if we use x′ ∈ RN×n to denote

the spline positions at a variety of intermediate times, where N denotes the number

of additional times that we are constraining, we can solve for these positions via a

3In theory, if we wanted to ensure that the entire spline obeys a position or derivative constraint,
we would have to add an infinite number of such variables. However, as we will show, in practice we
can obtain good results by introducing a very small number of additional variables, greatly increasing
the practicality of the approach. This same consideration applies to the kinematic feasibility and
collision constraints.

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 131

(a) (b)

���������	
������
���	������ ������	������

Figure 6.6: Illustration of kinematic feasibility constraints. (a) Kinematically feasible
region for q1 ∈ [−π/2, π/2], q2 ∈ [−2.6, 2.6]. (b) Convex subset of the feasible region.

linear system

x′ = G1x+G2ẋ (6.15)

and similarly for other derivatives.

Kinematic feasibility constraints. Since we are specifically focused on plan-

ning trajectories in task-space, a key requirement is that points on the spline must

be kinematically feasible for the robot. While the kinematic feasibility region of an

articulated body with joint stops is not typically a convex set, we can usually find a

suitable subset of this kinematic region that is convex.

For example, consider the double pendulum shown in Figure 6.6 (which has very

similar kinematics to a 2D view of the LittleDog’s leg). The kinematically feasible

region, when joint one is restricted to the range [−π/2, π/2] and joint two is restricted

to the range [−2.6, 2.6], is shown in Figure 6.6 (a). Although this region is not convex,

we can easily find a convex subset, such as the region shown in Figure 6.6 (b). Thus,

if we constrain motion to occur in some convex subset of the kinematically feasible

region, we can ensure kinematic feasibility while retaining benefits of the convex

optimization procedure.

Collision constraints. Although general collision constraints can be quite dif-

ficult to handle in our framework, in many simple cases we can approximate such

constraints using a simple method shown in Figure 6.7. Here Figure 6.7 (a) shows

the initial plan used by the cubic spline optimizer (recall from above such a plan

need to be feasible). Two waypoints on this initial trajectory violate the collision

constraint, so we simply add the constraint, at each of these times, that the resulting

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 132

(a) (b)

���������	���
 �����
����
���
������

��
�������
����������

(c)

Figure 6.7: Illustration of collision constraints. (a) Initial (infeasible) plan. (b) Height
constraints imposed to avoid collision with obstacle. (c) Resulting optimized cubic
spline trajectory.

waypoint must lie above the the obstacle by some margin; Figure 6.7 (b) shows this

constraint, and Figure 6.7 (c) shows the resulting trajectory. This technique is an

approximation, because 1) it only constrains the end-effector position and still could

lead to a collision with the articulated body, 2) it assumes that the x-position of the

waypoints after optimization doesn’t change, when in fact it can and 3) as mentioned

in Footnote 3, these collision constraints are only imposed at a finite number of points,

so we have to insure that the “resolution” of these points is smaller than any thin

obstacles. Nonetheless, as we show, this simple approximation works quite well in

practice, and allows us to maintain convexity of the optimization problem.

For some planning problems, adding enough constraints of any of the preceding

types can lead to an infeasible optimization problem. Thus, this approach is not

suited to all planning situations; if plans must traverse through non-convex, narrow

“corridors” in the robot’s configuration space, then slower, traditional motion plan-

ning algorithms may be the only possible approach. Furthermore, the technique as

described is somewhat specialized to domains, like the LittleDog, where the “up”

direction tends to move the end effector away from obstacles; to handle more gen-

eral collision constraints it would be necessary to constrain spline positions based on

normals from arbitrary surfaces, but for these types of more complex situations it is

likely that the non-convexity of the robot’s free space would cause additional concerns.

However, for situations where our method can be applied, such as the LittleDog plan-

ning tasks, our method can produce highly-optimized trajectories extremely quickly.

Optimization Objectives Given the variables and constraints described above,

we lastly need to define our final optimization objective. While we have experimented

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 133

with several different possible optimization objectives, one that appears to work quite

well is to penalize the squared velocities at the waypoints and at a few intermediate

points between each waypoint. More formally, we use the optimization objective

f(ẋ, ẋ′) = tr ẋT ẋ+ tr ẋ′
T
ẋ′ (6.16)

where ẋ represents the velocity at each waypoint and ẋ′ represents the velocities at

the midpoint between each waypoint. This objective has the effect of discouraging

very large velocities at any of the spline points, which leads to trajectories that travel

minimal distances while keeping fairly smooth. However, while this objective works

well for our settings, there are many other possible objective functions that might work

better in other cases such as minimizing the maximum velocity, average or maximum

acceleration, average distance between spline points, or (using approximations based

on the Jacobians along the initial trajectory) average or maximum joint velocities or

torques.

One objective that cannot be easily minimized is the total time of the trajectory,

because equations (6.8)–(6.11) involve non-linear, non-convex functions of the times.

However, there has been previous work in approximately optimizing the times of cubic

splines (Cao et al., 1997; Park et al., 1997; Vaz and Fernandes, 2006), and if the total

time of the trajectory is ultimately the most important objective, these techniques

can be applied.

Application to Fast Foot/Body Motion Planning

Here we describe how the cubic spline optimization technique can be applied to the

task of planning foot and body trajectories for the static walking gait. Recall that

the basic planning task that we are considering is as follows: given a current position

of the robot and an upcoming footstep, plan trajectories for the feet and robot center

of gravity (COG) that achieves this footstep, while requiring that the COG and

foot locations are kinematically feasible, collision free, and maintain static stability.

Although the footstep planner plans one footstep at a time, in practice we plan

trajectories here for two steps at a time to ensure that the COG ends in a desirable

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 134

Figure 6.8: Foot planning task, and initial trajectory.

location for the next step.

6.5.2 Planning Foot Trajectories

An illustration of the foot trajectory planning task is shown in Figure 6.8, along

with the initial plan we supply to the cubic spline optimization. The initial plan

is a simple trapezoid, with three waypoints allocated for the upward and downward

“ramps”, and the remaining waypoints in a line, spaced in 2cm intervals. We use the

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 135

following optimization problem to plan the foot trajectories:

min
x,x′,ẋ,ẋ′,ẍ

tr ẋT ẋ+ tr ẋ′
T
ẋ′ (6.17)

subject to H1ẋ = H2x (6.18)

ẍ =
1

2
(H3x+H4ẋ) (6.19)

x′ = G1x+G2ẋ (6.20)

ẋ′ = G3x+G4ẋ (6.21)

x0,:= x̂0, xT,:= x̂T , ẋ0,:= 0, ẋT,:= 0 (6.22)

ẍt,x ≥ 0, ẍt,y ≥ 0, t = 0, 1 (6.23)

ẍt,x ≤ 0, ẍt,y ≤ 0, t = T − 1, T (6.24)

ẍt,x ≥ ẍt+1,x

ẍt,y ≥ ẍt+1,y

}

t = 2, . . . , T − 3 (6.25)

ẍt,z < 0, t = 2, . . . , T − 2 (6.26)

(xt,x − xt+2,x)
2 + (xt,y − xt+2,y)

2

≤ (3cm)2, t = 0, T − 2
(6.27)

x′
i,z ≥ x̂z(t

′
i) + 2cm, i = 1, . . . , N (6.28)

xt,z ≤ max
i=1,...,N

x̂z(t
′
i), t = 1, . . . T. (6.29)

While there are many different terms in this optimization problem, the overall idea is

straightforward. The optimization objective (6.17) is the squared velocity objective

we discussed earlier; constraints (6.18)–(6.21) are the standard cubic spline equations

for adding additional variables representing respectively the velocity at the waypoints,

the acceleration at the waypoints, additional position terms, and additional velocity

terms;4 (6.22) insures that the spline begins and ends at the start and goal, with zero

velocity; (6.23) and (6.24) ensure that the x, y accelerations are positive (negative) at

the start (end) ramp, which in turn ensures that the trajectory will never overshoot

4In greater detail, we add four additional velocity terms, in the midpoints of the waypoints on
the “ramp” portion of the initial trajectory. We add N additional position terms, one at each 1cm
interval along the top portion of the initial trajectory.

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 136

the start and end locations;5 (6.25) extends the previous constraint slightly to also

ensure that the x, y accelerations during the main trajectory portion are monotonic;

(6.26) forces the z accelerations during the main portion of the trajectory to be

negative, which ensures that the spline moves over any obstacles in one single arch;

(6.27) ensures that the last waypoints in the ramp don’t deviate from the start and

end positions by more than 3cm; finally, (6.28) and (6.29) ensure that the z position

of the spline is 2cm above any obstacle, and that no waypoint is more than 2cm higher

than the tallest obstacle (here x̂z(ti) denotes the height of the terrain at time ti along

the initial trajectory). This particular set of objectives and constraints were developed

specifically for the foot trajectory planning task, and many of the constraints were

developed over time in response to specific situations that caused simpler optimization

problems to produce sub-optimal plans.

Planning COG Trajectories

The aim of planning a trajectory for the COG is twofold: maintaining stability of the

robot while allowing the feet to reach their targets. Thus, we want to position the

body so as to maintain kinematic feasibility for the moving feet, and keep the robot’s

COG in the support triangle; since we are planning for two steps, when planning the

body movement for a back foot step we require the COG to be in a double support

triangle, which is stable for both steps (see, e.g., (Kolter et al., 2008b)). We always

use nine waypoints in the COG trajectory splines: three to move the COG into the

supporting triangle, and three for each foot movement. Since planning the COG

trajectory requires knowledge of the foot locations, we first use the method above to

plan trajectories for the moving feet, which we denote xf1(t) and xf2(t). We then use

5This constraint and next assume that the x̂0,x ≤ x̂T,x and x̂0,y ≤ x̂T,y. In the case that these
inequalities are reversed, the corresponding inequalities in the constraints are also reversed.

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 137

the following optimization problem to plan the COG trajectory:

min
x,ẋ,ẋ′

tr ẋT ẋ+ tr ẋ′
T
ẋ′

+λ
∑5

i=3 feas(xi,:, xf1(ti), f1)

+λ
∑7

i=5 feas(xi,:, xf2(ti), f2)

(6.30)

subject to H1ẋ = H2x (6.31)

ẋ′ = G3x+G4ẋ (6.32)

x0,:= x̂0, ẋ0, x2,:= x̂2, x8,:= x̂8 (6.33)

ẋ0,: = ẋinit (6.34)

xi,: ∈ S, i = 3, . . . , 7 (6.35)

where

feas(xbody, xfoot, f) (6.36)

denotes the squared distance from xfoot to the kinematically feasible region of foot f ,

given that the COG is positioned at point xbody, and where S denotes the support tri-

angle. Intuitively, the optimization objective (6.30) is a weighted combination of the

kinematic infeasibility of the moving feet plus the velocity terms we discussed earlier

— in practice, we choose λ = 100 to try to make the system as close to kinematically

feasible as possible, and only later try to minimize the velocities; constraints (6.31)

and (6.32) are again the standard cubic spline equations for velocity terms — here

we add eight additional velocity terms, one at the midpoint of each two waypoints;

(6.33) ensures that the trajectory begins, enters the supporting triangle, and ends at

the initially specified waypoints, while (6.34) ensures that the initial velocity of the

spline is equal to the COG’s current velocity; finally, (6.35) ensures that the COG

waypoints will be inside the supporting triangle during the times that the feet are

moving. Since the optimization problem treats distance to the feasible set as an op-

timization objective rather than a constraint, there is no concern that the optimizer

will fail to find a solution.

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 138

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

xy (m)

z
(m

)

Terrain

Desired Trajectory

Trajectory Waypoints

0.1 0.2 0.3 0.4 0.5 0.6

0.3

0.4

0.5

0.6

x
(m

)

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.12

−0.1

−0.08

−0.06

y
(m

)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

Time (s)

z
(m

)

Figure 6.9: Typical example of a foot trajectory generated by the algorithm. The
top figure shows the resulting trajectory in 3D space, while the bottom shows each
component as a function of time.

−0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

x (m)

y
(m

)

Desired Trajectory

Trajectory Waypoints

Support Triangle

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.05

0.1

x(
m

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.06

−0.04

−0.02

0

y
(m

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.01

0.02

0.03

0.04

Time (s)

z
(m

)

Figure 6.10: Typical example of a COG trajectory generated by the algorithm.

6.5.3 Experimental Evaluation

The cubic spline optimization procedure is used for all the experiments reported in

Section 6.7, but here we evaluate this specific component of the system. We begin

with a qualitative look at the trajectories generated by this method. Figure 6.9 shows

a typical footstep trajectory generated by this method. As we can see, the trajectory

moves the foot from its initial location to the desired location in one fluid motion,

stepping high enough to avoid any obstacles. Likewise, Figure 6.10 shows a typically

COG trajectory generated by the algorithm. Notice that the trajectory inside the

supporting triangle is not just a straight line: the algorithm adjusts the trajectory in

this manner to maximize the kinematic feasibility of the moving feet.

Of course, while examining the splines in this manner can help give an intuition

about kind of trajectories generated by our algorithm, we are ultimately interested

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 139

Terrain 1 2
Max Height 6.4 cm 10.4 cm

Picture

Height
map

Table 6.3: The training and testing terrains used to evaluate the cubic spline trajec-
tory planning on LittleDog..

Easy Terrain(1) Challenging Terrain(2)

Metric CSO Previous CSO Previous

% Successful Trials 100% 100% 100% 70 %

Speed (cm/sec) 7.02 ± 0.10 5.99 ± 0.07 6.30 ± 0.12 5.59 ± 0.31

Avg. Tracking Error (cm) 1.28 ± 0.03 1.40 ± 0.06 1.27 ± 0.05 1.55 ± 0.09

Avg. # Recoveries 0.0 0.0 0.5 ± 0.37 2.22 ± 1.45

Table 6.4: Performance of cubic spline optimization on the two quadruped terrains.
Terms include 95% confidence intervals where applicable.

in whether or not the method actually improves performance on the LittleDog. To

evaluate this, we tested the system on two terrains of varying difficulty, shown in

Table 6.3. We compare the cubic spline optimization approach to an older trajectory

planning method described in (Kolter et al., 2008b), which uses simple box-shapes to

step over terrain, and linear splines for moving the COG.

Table 6.4 shows the performance of the quadruped both with and without the

cubic spline optimization. We ran 10 trials on each of the terrains, and evaluated the

systems using 1) fraction of successful runs, 2) speed over terrain, 3) average number

of “recoveries,” as specified by the method of the previous section and 4) average

tracking error (i.e., distance between the planned and actual location) for the moving

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 140

foot. Perhaps the most obvious benefit of the cubic spline optimization method is

that the resulting speeds are faster; this is not particularly surprising, since the splines

output by our planner will clearly be more efficient than a simple box pattern over

obstacles. However, equally important is that the cubic spline optimization also leads

to more robust behavior, especially on the challenging terrain: the previous method

only succeeds in crossing the terrain 70% of the time, and even when it does succeed

it typically needs to execute several recoveries, whereas the cubic spline optimization

method crosses the terrain in all cases, and executes many fewer recoveries. We

believe that this is because the cubic spline method attempts to maintain kinematic

feasibility of the moving foot at all times. This is seen in Table 6.4 from the fact that

the cubic spline optimization approach has lower tracker error, implying more accurate

placement of feet, and therefore greater robustness is challenging environments.

6.6 Cost Learning via Hierarchical Apprenticeship

Learning

Recall that both the route planner and footstep planner make use of cost maps,

functions which indicate, for every point on the terrain, the goodness of placing the

robot’s center or a foot at that location. However, it is very challenging to specify

a proper cost function manually, as this requires quantifying the trade-off between

many features, including progress toward a goal, the height differential between feet,

the slope of the terrain underneath the feet, etc. Because of this, we adopt a method

known as apprenticeship learning, based upon the insight that often it is easier for

an “expert” to demonstrate the desired behavior than it is to specify a cost function

that induces this behavior. In the footstep planning example, for instance, it may

be challenging to manually specify the weights of a cost function that leads to good

footsteps; however, it is much easier, for example after seeing the robot step in a poor

location on the terrain, to indicate a better location for its footstep. Apprenticeship

learning has been successfully applied to many other robotics domains, and is a

natural fit for such problems (Abbeel and Ng, 2004; Ratliff et al., 2006; Neu and

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 141

Szepesvári, 2007).

However, a difficulty arises in applying existing apprenticeship learning methods

to a task like the LittleDog. Typical apprenticeship learning algorithms require the

expert to demonstrate a complete trajectory from the start to the goal, which in this

case corresponds to a complete set of footsteps across the terrain; this itself is a highly

non-trivial task, even for an expert. Motivated by these difficulties, we developed for

this task an algorithm for hierarchical apprenticeship learning. Our approach is based

on the insight that, while it may be difficult for an expert to specify entire optimal

trajectories in a large domain, it is much easier to “teach hierarchically”: that is, if

we employ a hierarchical control scheme to solve our problem, it is much easier for

the expert to give advice independently at each level of this hierarchy. At the lower

levels of the control hierarchy, our method only requires that the expert be able to

demonstrate good local behavior, rather than behavior that is optimal for the entire

task. This type of advice is often feasible for the expert to give even when the expert

is entirely unable to give full trajectory demonstrations. Thus the approach allows

for apprenticeship learning in extremely complex, previously intractable domains. We

first present the general hierarchical apprenticeship learning algorithm, then describe

its application to route and footstep planning.

6.6.1 The Hierarchical Apprenticeship Learning Algorithm

Definitions

To describe the hierarchical apprenticeship learning algorithm (abbreviated HAL),

we use the formalism of Markov Decision Processes (MDPs), as described briefly in

Chapter 2. To review, an MDP is a tuple (S,A, P,D,H,C), where S is a set of states;

A is a set of actions, P : S × A → S is a set of state transition probabilities; D is

a distribution over initial states; H is the horizon which corresponds to the number

of time-steps considered; and C : S → R is a cost function.6 We use the notation

MDP\C to denote an MDP minus the cost function. A policy π is a mapping from

6Here we assume the cost does not depend on the action, though the extension to state-action
costs is straightforward.

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 142

states to a probability distribution over actions. The value or cost-to-go of a policy π

is given by J(s, π) = E
[

∑H
t=0C(st)|π

]

, where the expectation is taken with respect to

the random state sequence s0, s1, . . . , sH , with s0 drawn from D, and picking actions

according to π.

Often the cost function C can be represented more compactly as a function of the

state. Let φ : S → Rn be a mapping from states to a set of features. We consider the

case where the cost function C is a linear combination of the features

C(s) = wTφ(s) (6.37)

for parameters w ∈ Rn. Then we have that the value of a policy φ is linear in these

cost function weights

J(π) = E

[

H
∑

t=0

C(st)
∣

∣

∣
π

]

= E

[

H
∑

t=0

wTφ(st)
∣

∣

∣
π

]

= wTE

[

H
∑

t=0

φ(st)
∣

∣

∣
π

]

≡ wTµφ(π)

where we used linearity of expectation to bring w outside of the expectation. The

last quantity defines the vector of feature expectations µφ(π) = E[
∑H

t=0 φ(st)|π].

Cost Decomposition in HAL

At the heart of the HAL algorithm is a simple decomposition of the cost function that

links the two levels of control. Suppose that we are given a hierarchical decomposition

of a control task in the form of two MDP\Cs — a low-level and a high-level MDP\C,

denotedMℓ = (Sℓ, Aℓ, Tℓ, Hℓ, Dℓ) andMh = (Sh, Ah, Th, Hh, Dh) respectively — and a

partitioning function ψ : Sℓ → Sh that maps low level states to high-level states (the

assumption here is that |Sh| ≪ |Sℓ| so that this hierarchical decomposition actually

provides a computational gain). For example, for the LittleDog planner task the

low-level MDP\C is the footstep planning domain, where the state consists of all four

foot locations, whereas the high-level MDP is the route planning domain, where the

state consists of only the robot’s center. As standard in apprenticeship learning, we

suppose that the cost in the low-level MDP\C can be represented as a linear function

of state features, C(sℓ) = wTφ(sℓ). The HAL algorithm then assumes that the cost

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 143

of a high-level state is equal to the average cost over all its corresponding low-level

states. Formally

C(sh) =
1

N(sh)

∑

sℓ∈ψ−1(sh)

C(sℓ)

=
1

N(sh)

∑

sℓ∈ψ−1(sh)

wTφ(sℓ) =
1

N(sh)
wT

∑

sℓ∈ψ−1(sh)

φ(sℓ)
(6.38)

where ψ−1(sh) denotes the inverse image of the partitioning function and N(sh) =

|ψ−1(sh)|. While this may not always be the most ideal decomposition of the cost

function in many cases—for example, we may want to let the cost of a high-level

state be the minimum of its low level state costs to capture the fact that an ideal

agent would always seek to minimize cost at the lower level, or alternatively the

maximum of its low level state costs to be robust to worst-case outcomes—it captures

the idea that in the absence of other prior information, it seems reasonable to assume

a uniform distribution over the low-level states corresponding to a high-level state.

An important consequence of (6.38) is that the high level cost is now also linear in the

low-level cost weights w. This will enable us in the subsequent sections to formulate

a unified hierarchical apprenticeship learning algorithm that is able to incorporate

expert advice at both the high level and the low level simultaneously.

Expert Advice and a Convex Formulation

As in standard apprenticeship learning, expert advice at the high level consists of

full policies demonstrated by the expert. However, because the high-level MDP\C

can be significantly simpler than the low-level MDP\C, this task can be substantially

easier. If the expert suggests that π
(i)
h,E is an optimal policy for some given MDP\C

M
(i)
h , then this corresponds to the following constraint, which states that the expert’s

policy outperforms all other policies:

J (i)(π
(i)
h,E) ≤ J (i)(π

(i)
h) ∀π(i)

h . (6.39)

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 144

Equivalently, using (6.38), we can formulate this constraint as follows

wTµ
(i)
φ (π

(i)
h,E) ≤ wTµφ(π

(i)
h) ∀π(i)

h . (6.40)

and where in practice we will use observed feature counts µ̂
(i)
φ (π

(i)
h,E) in lieu of the true

expectations.

Our approach differs from standard apprenticeship learning when we consider

advice at the low level. Unlike the apprenticeship learning paradigm where an expert

specifies full trajectories in the target domain, we allow for an expert to specify single,

greedy actions in the low-level domain. Specifically, if the agent is in state sℓ and the

expert suggests that the best greedy action would move to state s′ℓ, this corresponds

directly to a constraint on the cost function, namely that

C(s′ℓ) ≤ C(s′′ℓ) (6.41)

for all other states s′′ℓ that can be reached from the current state (we say that s′′ℓ

is “reachable” from the current state sℓ if ∃a s.t.Psℓa(s
′′
ℓ) > ǫ for some 0 < ǫ ≤ 1).

This is equivalent to the following constraint on the constraints on the cost function

parameters w,

wTφ(s′ℓ) ≤ wTφ(s′′ℓ) (6.42)

for all s′′ℓ reachable from sℓ.

Since the high level and low level expert advice are both given as linear con-

straints on the features w, we can combine both types of advice into a single convex

optimization problem. To resolve the ambiguity in w, and to allow the expert to

provide noisy advice, we use regularization and slack variables (similar to standard

SVM formulations), which results in the optimization problem

min
w,η≥0,ξ≥0

1

2
‖w‖22 + λℓ

m
∑

j=1

ξ(j) + λh

n
∑

i=1

η(i)

s.t.wTφ(s′ℓ
(j)
) ≤ wTφ(s′′ℓ

(j)
)− 1 + ξ(j) ∀s′′ℓ

(j)
, j

wT µ̂
(i)
φ (π

(i)
h,E) ≤ wTµφ(π

(i)
h)− 1 + η(i) ∀π(i)

h , i.

(6.43)

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 145

where π
(i)
h indexes over all high-level policies, ηi and ξi are slack variables, i indexes

over all MDPs, s′′ℓ
(j) indexes over all states reachable from s′ℓ

(j) and j indexes over all

low-level demonstrations provided by the expert, and λh and λℓ are a regularization

parameters. Despite the fact that there are an exponential number of possible policies

we can solve this optimization problem using a number of techniques, including dual

formulations (Taskar et al., 2005), subgradient algorithms (Ratliff et al., 2006), and

constraint generation (Tsochantaridis et al., 2005). We use a method based on this

last approach, and use the following constraint generation algorithm:

1. Begin with no expert path constraints.

2. Find the current cost weights by solving the current optimization problem.

3. Solve the reinforcement learning problem at the high level of the hierarchy to

find the optimal (high-level) policies for the current cost for each MDP\C, i. If

the optimal policy violates the current (high level) constraints, then add this

constraint to the current optimization problem and go to Step (2). Otherwise,

no constraints are violated and the current cost weights are the solution of the

optimization problem.

Solving this optimization problem provides us with a single cost function that is

consistent with the expert advice both for the low and high levels.

6.6.2 Application to Cost Map Learning

As mentioned briefly in the previous section, the application of the HAL algorithm to

route and footstep planning is conceptually straightforward: the route planner takes

the place of the high-level planner and the footstep planner takes the place of the

low-level planner.

Of course, a crucial element of the actual implementation of this approach is

determining what features to use to represent the cost function for the footstep and

high-level planner. We use the following set of features (note that for a given point

on the terrain we actually form four feature vectors, one corresponding to each foot,

with local features properly reflected to account for symmetry of the robot):

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 146

• At each point in the height map (discretized at a resolution of 0.5 cm), we

consider local heights maps of different sizes (squares of 5, 7, 11, and 21 grid

cells around the current point), and generate five features for each of these

maps: 1) standard deviation of the heights, 2) average slope in the x direction,

3) average slope in the y direction 4) maximum height relative to the center

point and 5) minimum height relative to the center point, for a total of 20

features.

• A boolean feature indicating whether or not the foot location leads to a collision

when the robot is placed in its default position.

• The distance of the point from the desired foot location (i.e., the location that

the footstep planner would place its foot if all costs were equal).

• The area and in-radius of the support triangle formed by the stationary feet for

the upcoming step.

• A constant value.

While the first two features above can be generated once before execution, the second

two require the actual pose of the robot, and so are generated in real time by the

footstep planning mechanism. This leads to a cost function that is a linear function

of 25 state features.

To form the cost for the high-level route planner, we aggregate features from

the footstep planner. In particular, for a given center location of the robot’s body

we consider all the footstep features within a 3 cm radius of the each foot’s default

position, and aggregate these features to form the features for the route planner. Note

that the features above that can only be generated during execution (the distance

from the desired footstep, the area and in-radius of the support triangle) will be the

same for each high-level center location, and so can be ignored, allowing us to run

the route planner prior to any execution. While this cost function is naturally an

approximation, we found that it performed very well in practice, possibly due to its

ability to account for stochasticity of the domain.

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 147

Terrain Training Testing
Max Height 8.0 cm 11.7 cm

Picture

Height
map

Table 6.5: The training and testing terrains used to evaluate HAL.

Figure 6.11: High-level (route) expert demonstration.

6.6.3 Experimental Evaluation

While the results that we present in Section 6.7 will all use the cost function learned

using this algorithm, in this section we present results explicitly demonstrating the

performance of the system with and without the HAL algorithm. All experiments

were carried out on two terrains: a relatively easy terrain for training, and a signif-

icantly more challenging terrain for testing, shown in Table 6.5. To give advice at

the high level, we specified complete body trajectories for the robot’s center of mass,

as shown in Figure 6.11. To give advice for the low level we looked for situations

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 148

Figure 6.12: Low-level (footstep) expert demonstration.

Training Testing
HAL 31.03 33.46

Feet Only 33.46 45.70
Path Only — —
No Learning 45.70 —

Table 6.6: Execution times for different constraints on training and testing terrains.
Dashes indicate that the robot fell over and did not reach the goal.

in which the robot stepped in a suboptimal location, and then indicated the correct

greedy foot placement (by clicking on a point in the terrain in a computer interface),

as shown in Figure 6.12. The entire training set consisted of a single high-level path

demonstration across the training terrain, and 20 low-level footstep demonstrations

on this terrain; it took about 10 minutes to collect the data. The general cost map

that was learned, as expected, typically preferred flat areas over areas close to a cliff,

but the precise trade-offs implied by the learned cost function are difficult to evaluate

except with respect to the resulting performance.

Even from this small amount of training data, the learned system achieved excel-

lent performance, not only on the training board, but also on the much more difficult

testing board. Figure 6.13 shows the route and footsteps taken for each of the different

possible types of constraints, which shows a very large qualitative difference between

the footsteps chosen before and after training. Table 6.6 shows the crossing times for

each of the different types of constraints. As shown, the HAL algorithm outperforms

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 149

Figure 6.13: Body and footstep plans for different constraints on the training
(left) and testing (right) terrains: (First/Red) No Learning, (Second/Green) HAL,
(Third/Blue) Path Only, (Fourth/Yellow) Footstep Only.

all the intermediate methods. Using only footstep constraints does quite well on the

training board, but on the testing board the lack of high-level training leads the robot

to take a very roundabout route, and it performs much worse. The LittleDog fails at

crossing the testing terrain when learning from the path-level demonstration only or

when not learning at all.

6.7 Learning Locomotion Program Results

While the previous sections have included results as a means of evaluating the various

approaches, here we present the results of our system in the official tests of the

Learning Locomotion program. As discussed in Section 6.2, the Learning Locomotion

program consisted of three phases, each with specific metrics in terms of the speed

and terrain height: for Phase I, the metric was 1.2 cm/s over 4.8 cm obstacles; for

Phase II, 4.2 cm/s over 7.8 cm obstacles; and for Phase III, 7.2 cm/s over 10.8 cm

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 150

Terrain Type Average Speed
Rocks 5.6 cm/s
Slope 6.5 cm/s
Steps 5.4 cm/s

Modular Rocks 7.4 cm/s
Barrier 5.9 cm/s

Modular Logs 7.2 cm/s
Gap 5.9 cm/s

Average 6.3 cm/s

Table 6.7: Speeds for Phase II system and terrains. Average speed is based upon
the best two out of three runs. We received no information as to whether the system
based all 3/3 test or only 2/3, but all test passed at least 2/3 of the runs.

obstacles. As the metric evaluations were much more standardized in Phases II and

III than in Phase I, we present here our results for these later phases of the project,

along with analysis about how we obtained these results.

For Phase II and Phase III, the testing procedures operated as follows. Through-

out each phase, all the teams had access to seven terrain boards of various types (the

different types are listed in the tables below), known as the “A” terrains. For the

final metric evaluations, all teams were tested on a different set of terrains (the “B”

terrains) that were informally from the same “class” of obstacles as the A boards,

but which were not available prior to the tests. Teams did have the opportunity test

a very limited number of times on these boards prior to the final metric tests, but re-

ceived no information other than the number of times the system successfully crossed

and the speed of the gait. Thus, the tests below represent an evaluation on terrain

that truly was novel to the robot, and required that the robot be able to adapt to

situations that we could not simply hand-engineer.

Table 6.7 shows our performance on the Phase II metrics. For Phase II, our

research was focused entirety on static gaits: the static gait described in Section 6.3

was built in its entirely during Phase II, with only small changes in Phase III to allow

for the ability to switch to other gaits in real-time. We made use of no specialized

maneuvers or trotting, so run times for all the different terrains were similar (the

more challenging rocks and steps were slightly slower, but there was ultimately little

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 151

Terrain Type Average Speed Success
Gap 13.1 cm/s 3/3

Barrier 13.2 cm/s 3/3
Sloped Rocks 5.7 cm/s 3/3
Modular Rocks 11.3 cm/s 3/3

Logs 4.8 cm/s 3/3
Steps 6.2 cm/s 3/3

Average 9.7 cm/s 3/3
Side Slope 23.7 cm/s 2/3
V-ditch 16.8 cm/s 3/3

Scaled Steps 6.6 cm/s 2/3

Table 6.8: Speeds and success rates for Phase III system and terrains. Average speed
is based upon best two runs. The first six terrains represent the “standard” Phase
III tests, while the last three represent three additional optional terrains. The video
references in the text shows all nine terrains.

variation in the run times).

Table 6.8 shows our performance on the Phase III metrics. Unlike Phase II, for

Phase III our focus was entirely on dynamic gaits, in particular the trot and the

specialized maneuvers. Ultimately, we were able to develop controllers that allowed

us to use trots and specialized maneuvers for all but two of the terrains: the sloped

rocks and the logs. Predictably, our running times on these terrains were similar

to our Phase II running times (even a bit slower for the logs, owing to the added

difficulty of the higher obstacles), but were much faster for terrains where we could

exploit dynamic gaits. Nonetheless, the results from this phase also served to convince

us that, while dynamic gaits are suitable to many scenarios, static walking still serves

a genuine purpose for robots similar to the LittleDog: despite extensive development,

we were unable to achieve reliable performance from dynamic behavior on either the

sloped rocks or the logs terrains. Thus, we feel that robots which can exhibit both

these modes of locomotion will be the most interesting research testbeds in the years

to come.

Detailed performance results for all teams during the testing have not been of-

ficially released, so we compare only briefly to the other teams. Our average speed

in Phase II was the highest of all six competing Learning Locomotion teams, and

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 152

we crossed all terrains above metric speed; our average speed was the second highest

during Phase III though other teams crossed more terrains above the metric speed.

Videos of the our robot crossing all the Phase III terrains (only the “A” boards, but

the performance on these boards was virtually identical to the performance on the

metric “B” boards), are available at: http://ai.stanford.edu/~kolter/ijrr09ld.

6.8 Summary

In this chapter we have presented a software system for a quadruped robot that allows

it to quickly and reliably negotiate a wide variety of challenging terrain, using both

static and dynamic modes of locomotion. The techniques we apply to this task, in

particular the constant use of rapid recovery and replanning methods, are motivated

by the inability to develop an accurate model of the LittleDog system. Despite this

difficulty in modeling, we show our system is able to quickly and robustly cross a

wide variety of challenging terrains. While we have developed a substantial system

for this work, capable of navigating terrains well beyond what quadrupeds robots

could handle when this work began, the research has also lead to new topics and

directions.

Advanced robot hardware and compliance. Although the LittleDog is a

capable robotic platform, other legged robots have significantly greater physical ca-

pabilities. Compliant legs, in particular, able to store energy from impacts and pro-

viding a purely mechanical means of adjusting to some level of irregularity, offer a

large potential advantage over the relatively stiff legs of LittleDog. An important

topic for future work involves how to extend the careful planning methods developed

on the LittleDog to these more compliant and mechanically robust robotic systems.

And while these additions further the mechanical capability of the robot, they can

be correspondingly harder still to model accurately, and thus methods that function

with inaccurate models are a priority here.

Onboard vision. Related to the goal of bringing these robots into the real

world, we do of course have to recognize that most of the work we present in this

chapter has been conducted in a highly idealized setting, where we have full knowledge

CHAPTER 6. APPLICATION TO THE LITTLEDOG ROBOT 153

Figure 6.14: Prototype system with onboard stereo camera, and snapshots of the
system crossing one of the more difficult terrains, using only onboard vision.

of the terrain at run-time, and nearly flawless sensing. If the robots are to move

outside the lab, we need vision which is completely on-board. We have pursued this

topic a fair amount in tandem with the research presented here, and in Kolter et al.

(2009) we present a prototype of a stereo vision system for the LittleDog, which

is able to cross one of the more challenging terrains from the Learning Locomotion

project (the Phase II rocks terrain, used as the challenging terrain in Section 6.5)

using only onboard vision for both localization and mapping. Figure 6.14 shows this

prototype system, as well as snapshots of it crossing this terrain. However, the robot

admittedly moves much slower and less robustly when it uses only onboard vision,

and a major direction for future research involves increasing the capability of vision

systems such that they can compete with the offboard vision systems we have used

for the majority of this work. In addition, such systems could be integrated with

the existing system to provide a smooth degradation in the quality of perception,

making it possible to determine with greater precision how trade-offs in perception

accuracy affect performance. Finally, this work again raises the issue of inaccurate

models, as imperfect knowledge of the terrain near the robot corresponds exactly to

an inaccurate or uncertain model of the robot’s dynamics; thus, techniques that can

handle such imperfect information are key to this work.

Chapter 7

Conclusion

A key challenge in applying model-based Reinforcement Learning and optimal control

methods to complex dynamical systems, such as those arising in many robotics tasks,

is the difficulty of obtaining an accurate model of the system. These algorithms

perform very well when they are given or can learn an accurate dynamics model, but

often times it is very challenging to build an accurate model by any means: effects

such as hidden or incomplete state, dynamic or unknown system elements, and other

effects, can render the modeling task very difficult.

This work has proposed a number of algorithms and empirical demonstrations

for dealing with such situations. In particular, we have develop three algorithms for

exploiting inaccurate models in different manners. We presented the Policy Gradient

with the Signed Derivative algorithm, an approximate policy gradient method that

enables us to learn policy parameters using a model that must only capture the correct

signs of certain matrix derivative terms. We also presented a dimensionality reduction

method for policy search, which uses a distribution over inaccurate models to identify

a linear subspace of controllers, then learns an element from this subspace on the

real system. Finally, we developed a probabilistic method for combining inaccurate

models and observed trajectories, using a method we call Multi-model LQR, to achieve

a mixture of open-loop and closed-loop behavior for control tasks where we cannot

model the system accurately in certain regions.

In addition to these algorithms, a key contribution of this work has been the

154

CHAPTER 7. CONCLUSION 155

application of these methods to challenging tasks in robotic control. In particular,

several of the algorithms we present here were applied to the LittleDog robot, a small

quadruped robot, and have enabled it to cross a wide variety of complex terrain,

including jumping over large obstacles, and quickly following complex motion paths.

We also use the methods to enable a full-sized autonomous car to perform a “power-

slide” maneuvers, accurately skidding the car sideways into a narrow parking spot. In

both cases, the applications demonstrate state-of-the-art results on these challenging

control tasks.

Looking forward, several key challenges emerge as directions for future work. Al-

gorithmically, one of the key challenges for such methods is finding the proper inte-

gration with learning or adaptive control approaches. While the work in this thesis

avoided the issue of directly learning a model, or tried to exhaust all options for model-

building before applying the described algorithms, the fields of machine learning for

control and adaptive control have also shown great abilities to control and model

complex systems. While this work has specifically looked at the question of what can

be done without learning any accurate model (and rather learning an control policy

directly, in many cases), the most powerful techniques are likely to come from an

iterative combination of both using these algorithms to address those model elements

that truly cannot be learned, and adaptive control or machine learning techniques to

address those elements that can be modeled.

From an application standpoint, there remains many challenging problems in both

quadruped locomotion and “extreme” autonomous driving. One of the primary chal-

lenges with the LittleDog robot is that it was not intended for the high-speed dynamic

maneuvers that we focus on for much of this work. Indeed, more capable robotic sys-

tems will both greatly enhance the ability of quadruped robots, and also will likely

require yet more methods for dealing with inaccurate models, as the additional me-

chanical complexity only compounds the difficulties in modeling. Likewise, accurate

control of autonomous vehicles in all modes at the limits of handling remains a chal-

lenging open problem, and one which will likely require a combination of advanced

modeling techniques, along with algorithms that can deal with inaccurate models to

overcome these difficulties.

Bibliography

Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement

learning. In Proceedings of the International Conference on Machine Learning.

Abbeel, P. and Ng, A. Y. (2005). Exploration and apprenticeship learning in re-

inforcement learning. In Proceedings of the International Conference on Machine

Learning.

Abbeel, P., Quigley, M., and Ng, A. Y. (2006). Using innaccurate models in rein-

forcement learning. In Proceedings of the International Conference on Machine

Learning.

Anderson, B. D. O. and Moore, J. B. (1989). Optimal Control: Linear Quadratic

Methods. Prentice-Hall.

Anderson, C. W. (1986). Learning and Problem Solving with Multilayer Connectionist

Systems. PhD thesis, University of Massachusetts.

Ando, R. K. and Zhang, T. (2005). A framework for learning predictive structures

from multiple tasks and unlabeled data. Journal of Machine Learning Research,

6:1817–1853.

Anthony, M. and Bartlett, P. L. (1999). Neural Network Learning: Theoretical Foun-

dations. Cambridge University Press.

Argyriou, A., Evgeniou, T., and Pontil, M. (2006). Multi-task feature learning. In

Neural Information Processing Systems.

156

BIBLIOGRAPHY 157

Argyriou, A., Micchelli, C. A., Pontil, M., and Ying, Y. (2007). A spectral regular-

ization framework for multi-task structure learning.

Armijo, L. (1966). Minimization of functions having Lipschitz continuous first partial

derivatives. Pacific Journal of Mathematics, 16(1):1–3.

Astrom, K. J. and Wittenmark, B. (1994). Adaptive Control. Prentice Hall.

Atkeson, C. G. and Santamaria, J. C. (1997). A comparison of direct and model-based

reinforcement learning. In International Conference on Robotics and Automation.

Atkeson, C. G. and Schaal, S. (1997). Learning tasks from a single demonstration.

In Proceedings of the International Conference on Robotics and Automation.

Bagnell, J. A., Kakade, S., Ng, A. Y., and Schneider, J. (2004). Policy search by

dynamic programming. In Neural Information Processing Systems 16.

Bagnell, J. A. and Schneider, J. (2003). Covariant policy search. In Proceedings of

the International Joint Conference on Artificial Intelligence.

Bares, J. and Wettergreen, D. (1999). Dante II: Technical description, results and

lessons learned. International Journal of Robotics Research, 18(7):621–649.

Bertsekas, D. P. (2005a). Dynamic Programming and Optimal Control, Vol I. Athena

Scientific.

Bertsekas, D. P. (2005b). Dynamic Programming and Optimal Control, Vol II. Athena

Scientific.

Betts, J. (1998). Survery of numerical methods for trajectory optimization. Journal

of Guidance, Control, and Dynamics, 21(2):193–207.

Boyd, S. and Vandenberg, L. (2004). Convex Optimization. Cambridge University

Press.

Boyd, S. P. (2003). Linear quadratic regulator: Discrete-time finite horizon. Lecture

Notes.

BIBLIOGRAPHY 158

Byl, K., Shkolnik, A., Prentice, S., Roy, N., and Tedrake, R. (2008). Reliable dynamic

motions for a stiff quadruped. In Proceedings of the 11th International Symposium

on Experimental Robotics.

Cao, B., Dodds, G., and Irwin, G. (1997). Constrained time-efficient smooth cu-

bic spline trajectory generation for industrial robots. In Proceedings of the IEE

Conference on Control Theory and Applications.

Caruana, R. (1997). Multitask learning. Machine Learning, 28(1):41–75.

Chestnutt, J., Kuffner, J., Nishiwaki, K., and Kagami, S. (2003). Planning biped

navigation strategies in complex environments. In Proceedings of the International

Conference on Humanoid Robotics.

Christopher G. Atkeson, Andrew W. Moore, S. S. (1997). locally weighted learning

for control. artificial intelligence review, 11:75–113.

Dasgupta, S. and Johnson, C. R. (1986). Some comments on the behavior of sign-sign

adaptive identifiers. Systems and Control Letters, 7:75–82.

Doya, K., Samejima, K., ichi Katagiri, K., and Kawato, M. (2002). Multiple model-

based reinforcement learning. Neural Computation, pages 1347–1369.

Dyer, P. and McReynolds, S. R. (1970). The Computation and Theory of Optimal

Control. Academic Press.

Fodor, I. (2002). A survey of dimension reduction techniques. Technical report, US

DOE Office of Scientific and Technical Information.

Fukuoka, Y., Kimura, H., and Cohen, A. H. (2003). Adaptive dynamic walking of a

quadruped robot on irregular terrain based on biological concepts. The Interna-

tional Journal of Robotics Research, 22:187–202.

Gerdes, C. (2009). Personal communication.

BIBLIOGRAPHY 159

Gillula, J., Huang, H., Vitus, M. P., and Tomlin, C. J. (2010). Design of guaran-

teed safe maneuvers using reachable sets: Autonomous quadrotor aerobatics in

theory and practice. In Proceedings of the International Conference on Robotics

and Automation.

Glynn, P. (1987). Likelihood ratio gradient estimation: an overview. In Proceedigns

of the 1987 Winter Simulation Conference.

Greensmith, E., Bartlett, P. L., and Baxter, J. (2004). Variance reduction techniques

for gradient estimates in reinforcement learning. Journal of Machine Learning

Research, 5:1471–1530.

Grillner, S. (1985). Neurobiological bases of rhythmic motor acts in vertebrates.

Science, 228(4696):143–149.

Hansen, E., Barto, A., and Zilberstein, S. (1996). Reinforcement learning for mixed

open-loop and closed-loop control. In Neural Information Processing Systems.

Hengst, B., Ibbotson, D., Pham, S. B., and Sammut, C. (2002). Omnidirectional

locomotion for quadruped robots. In RoboCup 2001: Robot Soccer World Cup V,

pages 368–373.

Hirose, S., Nose, M., Kikuchi, H., and Umetani, Y. (1984). Adaptive gait control of a

quadruped walking vehicle. International Journal of Robotics Research, 1:253–277.

Hodgins, J. K. and Raibert, M. H. (1990). Biped gymnastics. International Journal

of Robotics Research, 9(2):115–128.

Hoffmann, G. M., Tomlin, C. J., Montemerlo, M., and Thrun, S. (2007). Autonomous

automobile trajectory tracking for off-road driving: Controller design, experimental

validation and racing. In Proc. 26th American Control Conf.

Hornby, G. S., Takamura, S., Yamamoto, T., and Fujita, M. (2005). Autonomous

evolution of dynamic gaits with two quadruped robots. IEEE Transactions on

Robotics, 21(3):402–410.

BIBLIOGRAPHY 160

Hsu, Y.-H. J. and Gerdes, J. C. (2005). Stabilization of a steer-by-wire vehicle at the

limits of handling using feedback linearization. In Proceedings of the 2005 ASME

International Mechanical Engineering Congress and Exposition.

Ioannou, P. A. and Sun, J. (1995). Robust Adaptive Control. Prentice Hall.

Jacobson, D. H. and Mayne, D. Q. (1970). Differential Dynamic Programming. Amer-

ican Elsevier.

Jordan, M. I. and Rumelhart, D. E. (1992). Forward models: Supervised learning

with a distal teacher. Cognitive Science, 16:307–354.

Kakade, S. (2001). A natural policy gradient. In Neural Information Processing

Systems 14.

Kavraki, L. E., Svestka, P., Latombe, J.-C., and Overmars, M. H. (1996). Proba-

bilisitc roadmaps for path planning high-dimensional configuration spaces. IEEE

Transactions on Robotics and Automation, 12(4):566–580.

Kearns, M. and Singh, S. (2002). Near-optimal reinforcment learning in polynomial

time. Machine Learning, 49(2–3):209–232.

Khatri, C. G. and Mitra, S. K. (1976). Hermitian and nonnegative definite solutions

of linear matrix equations. SIAM Journal on Applied Mathematics, 31(4):579–585.

Kimura, H., Fukuoka, Y., and Cohen, A. H. (2007). Adaptive dynamic walking of a

quadruped robot on natural ground based on biological concepts. The International

Journal of Robotics Research, 26(5):475–490.

Ko, J., Klein, D. J., Fox, D., and Hhnel, D. (2007). Gaussian processes and re-

inforcement learning for identification and control of an autonomous blimp. In

International Conference on Robotics and Automation.

Kohl, N. and Stone, P. (2004). Machine learning for fast quadrupedal locomotion. In

The Nineteenth Conference on Artificial Intelligence.

BIBLIOGRAPHY 161

Kolter, J. Z., Abbeel, P., and Ng, A. Y. (2008a). Hierarchical apprenticeship learn-

ing, with application to quadruped locomotion. In Neural Information Processing

Systems 20.

Kolter, J. Z., Kim, Y., and Ng, A. Y. (2009). Stereo vision and terrain modeling for

quadruped robots. In Proceedings of the International Conference on Robotics and

Automation.

Kolter, J. Z. and Ng, A. Y. (2007). Learning omnidirectional path following using

dimensionality reduction. In Robotics Science and Systems.

Kolter, J. Z. and Ng, A. Y. (2009a). Policy search via the signed derivative. In

Proceedings of Robotics: Science and Systems.

Kolter, J. Z. and Ng, A. Y. (2009b). Task-space trajectories via cubic spline opti-

mization. In Proceedings of the International Conference on Machine Learning.

Kolter, J. Z., Plagemann, C., Jackson, D. T., Thrun, S., and Ng, A. Y. (2010). A

probabilistic approach to mixed open-loop and closed-loop control, with application

to extreme autonomous driving. In Proceedings of the International Conference on

Robotics and Automation.

Kolter, J. Z., Rodgers, M. P., and Ng, A. Y. (2008b). A complete control architecture

for quadruped locomotion over rough terrain. In Proceedings of the International

Conference on Robotics and Automation.

Konidaris, G. and Barto, A. (2006). Autonomous shaping: Knowledge transfer in

reinforcement learning. In Proceedings of the International Conference on Machine

Learning.

Krotkov, E., Simmons, R., and Whittaker, W. L. (1995). Ambler: Performance of a

Six-Legged Planetary Rover, 35(1):75–81.

LaValle, S. M. and Kuffner, J. J. (1999). Randomized kinodynamic planning. In

Proceedings of the International Conference on Robotics and Automation.

BIBLIOGRAPHY 162

Li, H., Liao, X., and Carin, L. (2009). Multi-task reinforcement learning in par-

tially observable stochastic environments. Journal of Machine Learning Research,

10:1131–1186.

Li, W. and Todorov, E. (2005). Iterative linear qaudratic regulator design for nonlin-

ear biological movement systems. In Proceedings of the International Conference

on Informatics in Control.

Lin, C.-S., Chang, P.-R., and Luh, J. (1983). Formulation and optimization of cubic

polynomial joint trajectories for industrial robots. IEEE Transactions on Automatic

Control, 28(12):1066–1074.

Ljung, L. (1999). System Identification: Theory for the User. Prentice Hall.

Lucky, R. W. (1966). Techniques for adaptive equalization of digital communication

systems. Bell Systems Technical Journal, 45:255–286.

Mahadevan, S. and Maggioni, M. (2007). Proto-value functions: A laplacian frame-

work for learning representation and control in markov decision processes. Journal

of Machine Learning Research, 8:2169–2231.

McGhee, R. (1985). Vehicular legged locomotion. In Advances in Automation and

Robotics, pages 259–284.

McGhee, R. B. (1967). Finite state control of quadruped locomotion. Simulation,

5:135–140.

McGhee, R. B. (1968). Some finite state aspects of legged locomotion. Mathematical

Biosciences, 2:67–84.

McGhee, R. B. and Frank, A. A. (1968). On the stability properties of quadruped

creeping gaits. Mathematical Biosciences, 3:331–351.

Mehta, N., Natarajan, S., Tadepalli, P., and Fern, A. (2008). Transfer in variable-

reward hierarchical reinforcement learning. Machine Learning, 73(3):289–312.

BIBLIOGRAPHY 163

Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S.,

Haehnel, D., Hilden, T., Hoffman, G., Huhnke, B., Johnston, D., Klumpp, S.,

Langer, D., Levandowski, A., Levinson, J., Marcil, J., Orenstein, D., Paefgen, J.,

Penny, I., Petrovskaya, A., Pflueger, M., Stanek, G., Stavens, D., Vogt, A., and

Thrun, S. (2008). Junior: The stanford entry in the urban challenge. Journal of

Field Robotics, 25(9):569–597.

Moore, K. L. (1999). Iterative learning control: an expository overview. Applied and

Computational Controls, Signal Processing, and Circuits, 1(1):151–214.

Mosher, R. S. (1968). Test and evaluation of a versatile walking truck. In Proceedings

of off-road mobili6ty research symposium, pages 359–379.

Murphy, M. P., Saunders, A., Moreira, C., Rizzi, A. A., and Raibert, M. (2010). The

littleDog robot. To appear in The International Journal of Robotics Research.

Murray-Smith, R. and Johansen, T. A. (1997). Taylor and Francis.

Narendra, K. S. and Balakrishnan, J. (1997). Adaptive control using multiple models.

IEEE Transactions on Automatic Control, pages 171–187.

Neu, G. and Szepesvári, C. (2007). Apprenticeship learning using inverse reinforce-

ment learning and gradient methods. In Proceedings of Uncertainty in Artificial

Intelligence.

Ng, A. Y. and Jordan, M. (2000). Pegasus: A policy search method for large mdps and

pomdps. In Proceedings of the Conference on Uncertainty in Artificial Intelligence.

Nichol, J. G., Singh, S. P., Waldron, K. J., III, L. R. P., and Orin, D. E. (2004). Sys-

tem design of a quadrupedal galloping machine. International Journal of Robotics

Research, 23(10–11):1013–1027.

Park, J.-H., Kim, H.-S., and Choi, Y.-K. (1997). Trajectory optimization and control

for robot manipulator using evolution strategy and fuzzy logic. In Proceedings of

the IEEE International Conference on Systems, Man, and Cybernetics.

BIBLIOGRAPHY 164

Peters, J. and Schaal, S. (2006). Policy gradient methods for robotics. In Proceedings

of the IEEE Conference on Intelligent Robotics Systems.

Peters, J. and Schall, S. (2004). Learning motor primatives with reinforcement learn-

ing. In Proceedings of the 11th Joint Symposium on Neural Computation.

Peters, J., Vijayakumar, S., and Schaal, S. (2005). Natural actor-critic. In Proceedings

of the European Conference on Machine Learning.

Poulakakis, I., Smith, J. A., and Buehler, M. (2005). Modeling and experiments of

untethered quadrupedal running with a bounding gait: The scout ii robot. The

International Journal of Robotics Research, 24(4):239–256.

Putterman, M. L. (2005). Markov Decision Processes: Discrete Stochastic Dynamic

Progamming. Wiley Interscience.

Raibert, M., Blankespoor, K., Nelson, G., and Playter, R. (2008). Bigdog, the rough-

terrain quadruped robot. In Proceedings of the International Federation of Au-

tonomous Control.

Raibert, M. H. (1986). Legged Robots that Balance. MIT Press.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine

Learning. The MIT Press.

Ratliff, N., Bagnell, J. A., and Zinkevich, M. (2006). Maximum margin planning. In

Proceedings of the International Conference on Machine Learning.

Reinsel, G. C. and Velu, R. P. (1998). Multivariate Reduced-Rank Regression: Theory

And Appplications. Springer-Verlag.

Riedmiller, M. and Braun, H. (1992). RPROP – a fast adaptive learning algorithm.

In Proceedings of the International Symposium on Computer and Information Sci-

ences.

Roy, N., Gordon, G., and Thrun, S. (2005). Finding approximate pomdp solutions

through belief compression. Journal of Artificial Intelligence Research, 23:1–40.

BIBLIOGRAPHY 165

Saranli, U., Buehler, M., and Koditschek, D. (2001). Rhex: A simple and highly

mobile hexapod robot. Int. Journal of Robotics Research, 20:616–631.

Sastry, S. and Bodson, M. (1994). Adaptive Control: Stability, Convergence, and

Robustness. Prentice-Hall.

Saunders, A., Goldman, D., Full, R., and Buehler, M. (2006). The RiSE climbing

robot: Body and leg design. Proc. SPIE Int. Soc. Opt. Eng., 6230:623017.

Schaal, S. (1994). Nonparametric regression for learning. In Proceedings of the Con-

ference on Adaptive Behavior and :earning.

Schott, K. D. and Bequette, B. W. (1997). Multiple model adaptive control. In

Multiple Model Approaches to Modelling and Control.

Sideris, A. and Bobrow, J. E. (2005). An efficicent sequential linear quadratic algo-

rithm for solving nonlinear optimal control problems.

Stengel, R. F. (1994). Optimal Control and Estimation. John Wiley and Sons.

Stolle, M. and Atkeson, C. G. (2006). Policies based on trajectory libraries. In

International Conference on Robotics and Automation.

Stolle, M., Tappeiner, H., Chestnutt, J., and Atkeson, C. G. (2007). Transfer of

policies based on trajectory libraries. In International Conference on Intelligent

Robots and Systems.

Strehl, A. L., Li, L., and Littman, M. (2009). Reinforcement learning in finite mdps:

Pac analysis. Journal of Machine Learning Research, 10:2413–2444.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction.

MIT Press.

Tanaka, F. and Yamamura, M. (2003). Multitask reinforcement learning on the distri-

bution of mdps. In Proceedings of the International Symposium on Computational

Intelligence in Robotics and Automation.

BIBLIOGRAPHY 166

Taskar, B., Chatalbashev, V., Koller, D., and Guestrin, C. (2005). Learning struc-

tured prediction models: A large margin approach. In Proceedings of the Interna-

tional Conference on Machine Learning.

Taylor, M. E. and Stone, P. (2009). Transfer learning for reinforcement learning

domains: A survey. Journal of Machine Learning Research, 10:1633–1685.

Taylor, M. E., Stone, P., and Liu, Y. (2007). Transfer learning via inter-task mappings

for temporal different learning. Journal of Machine Learning Research, 8:2125–

2167.

Thrun, S. (1996). Is learnging the n-th thing any easier than learning the first? In

Neural Information Processing Systems.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2005). Large margin

methods for structured and interdependent output variables. Journal of Machine

Learning Research, 6:1453–1484.

Vaz, A. I. F. and Fernandes, E. M. (2006). Tools for robotic trajectory planning

using cubic splines and semi-infinite programming. In Seeger, A., editor, Recent

Advances in Optimization, pages 399–413. Springer.

Vijayakumar, S., D’Souza, A., and Schaal, S. (2005). Incremental online learning in

high dimensions. Neural Computation, 17:2602–2634.

Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits. In IRE WESCON

Convention Record.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine Learning, 8:229–256.

Williams, R. J. and Zisper, D. (1989). A learning algorithm for continually running

fully recurrent neural networks. Neural Computation, 1:270–280.

Wilson, A., Fern, A., Ray, S., and Tadepalli, P. (2007). Multi-task reinforcement

learning: A hierarchical bayesian approach. In Proceedings of the International

Conference on Machine Learning.

BIBLIOGRAPHY 167

Zhou, K., Doyle, J., and Glover, K. (1996). Robust and Optimal Controler. Prentice

Hall.

