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Abstract

We introduce the Multiple Quantile Graphical Model (MQGM), which extends
the neighborhood selection approach of Meinshausen and Bühlmann for learning
sparse graphical models. The latter is defined by the basic subproblem of model-
ing the conditional mean of one variable as a sparse function of all others. Our
approach models a set of conditional quantiles of one variable as a sparse function
of all others, and hence offers a much richer, more expressive class of conditional
distribution estimates. We establish that, under suitable regularity conditions, the
MQGM identifies the exact conditional independencies with probability tending to
one as the problem size grows, even outside of the usual homoskedastic Gaussian
data model. We develop an efficient algorithm for fitting the MQGM using the
alternating direction method of multipliers. We also describe a strategy for sam-
pling from the joint distribution that underlies the MQGM estimate. Lastly, we
present detailed experiments that demonstrate the flexibility and effectiveness of
the MQGM in modeling hetereoskedastic non-Gaussian data.

1 Introduction

We consider modeling the joint distribution Pr(y
1

, . . . , y
d

) of d random variables, given n indepen-
dent draws from this distribution y(1), . . . , y(n) 2 Rd, where possibly d� n. Later, we generalize
this setup and consider modeling the conditional distribution Pr(y

1

, . . . , y
d

|x
1

, . . . , x
p

), given n
independent pairs (x(1), y(1)), . . . , (x(n), y(n)) 2 Rp+d. Our starting point is the neighborhood selec-
tion method [28], which is typically considered in the context of multivariate Gaussian data, and seen
as a tool for covariance selection [8]: when Pr(y

1

, . . . , y
d

) is a multivariate Gaussian distribution, it
is a well-known fact y

j

and y
k

are conditionally independent given the remaining variables if and ony
if the coefficent corresponding to y

k

is zero in the (linear) regression of y
j

on all other variables (e.g.,
[22]). Therefore, in neighborhood selection we compute, for each k = 1, . . . , d, a lasso regression —
in order to obtain a small set of conditional dependencies — of y

k

on the remaining variables, i.e.,

minimize
✓k2Rd

nX

i=1

✓
y
(i)

k

�
X

j 6=k

✓
kj

y
(i)

j

◆
2

+ �k✓
k

k
1

, (1)

for a tuning parameter � > 0. This strategy can be seen as a pseudolikelihood approximation [4],

Pr(y
1

, . . . , y
d

) ⇡
dY

k=1

Pr(y
k

|y¬k

), (2)

where y¬k

denotes all variables except y
k

. Under the multivariate Gaussian model for Pr(y
1

, . . . , y
d

),
the conditional distributions Pr(y

k

|y¬k

), k = 1, . . . , d here are (univariate) Gaussians, and maximiz-
ing the pseudolikelihood in (2) is equivalent to separately maximizing the conditionals, as is precisely
done in (1) (with induced sparsity), for k = 1, . . . , d.

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



Following the pseudolikelihood-based approach traditionally means carrying out three steps: (i) we
write down a suitable family of joint distributions for Pr(y

1

, . . . , y
d

), (ii) we derive the conditionals
Pr(y

k

|y¬k

), k = 1, . . . , d, and then (iii) we maximize each conditional likelihood by (freely) fitting
the parameters. Neighborhood selection, and a number of related approaches that came after it (see
Section 2.1), can be all thought of in this workflow. In many ways, step (ii) acts as the bottleneck
here, and to derive the conditionals, we are usually limited to a homoskedastic and parameteric family
for the joint distribution.

The approach we take in this paper differs somewhat substantially, as we begin by directly modeling
the conditionals in (2), without any preconceived model for the joint distribution — in this sense, it
may be seen a type of dependency network [13] for continuous data. We also employ heteroskedastic,
nonparametric models for the conditional distributions, which allows us great flexibility in learning
these conditional relationships. Our method, called the Multiple Quantile Graphical Model (MQGM),
is a marriage of ideas in high-dimensional, nonparametric, multiple quantile regression with those in
the dependency network literature (the latter is typically focused on discrete, not continuous, data).

An outline for this paper is as follows. Section 2 reviews background material, and Section 3 develops
the MQGM estimator. Section 4 studies basic properties of the MQGM, and establishes a structure
recovery result under appropriate regularity conditions, even for heteroskedastic, non-Gaussian data.
Section 5 describes an efficient ADMM algorithm for estimation, and Section 6 presents empirical
examples comparing the MQGM versus common alternatives. Section 7 concludes with a discussion.

2 Background

2.1 Neighborhood selection and related methods

Neighborhood selection has motivated a number of methods for learning sparse graphical models. The
literature here is vast; we do not claim to give a complete treatment, but just mention some relevant
approaches. Many pseudolikelihood approaches have been proposed, see e.g., [35, 33, 12, 24, 17, 1].
These works exploit the connection between estimating a sparse inverse covariance matrix and regres-
sion, and they vary in terms of the optimization algorithms they use and the theoretical guarantees
they offer. In a clearly related but distinct line of research, [45, 2, 11, 36] proposed `

1

-penalized
likelihood estimation in the Gaussian graphical model, a method now generally termed the graphical
lasso (GLasso). Following this, several recent papers have extended the GLasso in various ways. [10]
examined a modification based on the multivariate Student t-distribution, for robust graphical model-
ing. [37, 46, 42] considered conditional distributions of the form Pr(y

1

, . . . , y
d

|x
1

, . . . , x
p

). [23]
proposed a model for mixed (both continuous and discrete) data types, generalizing both GLasso and
pairwise Markov random fields. [25, 26] used copulas for learning non-Gaussian graphical models.

A strength of neighborhood-based (i.e., pseudolikelihood-based) approaches lies in their simplicity;
because they essentially reduce to a collection of univariate probability models, they are in a sense
much easier to study outside of the typical homoskedastic, Gaussian data setting. [14, 43, 44] ele-
gantly studied the implications of using univariate exponential family models for the conditionals in
(2). Closely related to pseudoliklihood approaches are dependency networks [13]. Both frameworks
focus on the conditional distributions of one variable given all the rest; the difference lies in whether
or not the model for conditionals stems from first specifying some family of joint distributions (pseu-
dolikelihood methods), or not (dependency networks). Dependency networks have been thoroughly
studied for discrete data, e.g., [13, 29]. For continuous data, [40] proposed modeling the mean in a
Gaussian neighborhood regression as a nonparametric, additive function of the remaining variables,
yielding flexible relationships — this is a type of dependency network for continuous data (though it
is not described by the authors in this way). Our method, the MQGM, also deals with continuous
data, and is the first to our knowledge that allows for fully nonparametric conditional distributions, as
well as nonparametric contributions of the neighborhood variables, in each local model.

2.2 Quantile regression

In linear regression, we estimate the conditional mean of y|x
1

, . . . , x
p

from samples. Similarly, in ↵-
quantile regression [20], we estimate the conditional ↵-quantile of y|x

1

, . . . , x
p

for a given ↵ 2 [0, 1],
formally Q

y|x1,...,xp
(↵) = inf{t : Pr(y  t|x

1

, . . . , x
p

) � ↵}, by solving the convex optimization
problem: minimize

✓

P
n

i=1

 
↵

(y(i) �P
p

j=1

✓
j

x
(i)

j

), where  
↵

(z) = max{↵z, (↵� 1)z} is the ↵-

2



quantile loss (also called the “pinball” or “tilted absolute” loss). Quantile regression can be useful
when the conditional distribution in question is suspected to be heteroskedastic and/or non-Gaussian,
e.g., heavy-tailed, or if we wish to understand properties of the distribution other than the mean,
e.g., tail behavior. In multiple quantile regression, we solve several quantile regression problems
simultaneously, each corresponding to a different quantile level; these problems can be coupled
somehow to increase efficiency in estimation (see details in the next section). Again, the literature
on quantile regression is quite vast (especially that from econometrics), and we only give a short
review here. A standard text is [18]. Nonparametric modeling of quantiles is a natural extension from
the (linear) quantile regression approach outlined above; in the univariate case (one conditioning
variable), [21] suggested a method using smoothing splines, and [38] described an approach using
kernels. More recently, [19] studied the multivariate nonparametric case (more than one conditioning
variable), using additive models. In the high-dimensional setting, where p is large, [3, 16, 9] studied
`
1

-penalized quantile regression and derived estimation and recovery theory for non-(sub-)Gaussian
data. We extend results in [9] to prove structure recovery guarantees for the MQGM (in Section 4.3).

3 The multiple quantile graphical model

Many choices can be made with regards to the final form of the MQGM, and to help in understanding
these options, we break down our presentation in parts. First fix some ordered set A = {↵

1

, . . . ,↵
r

}
of quantile levels, e.g., A = {0.05, 0.10, . . . , 0.95}. For each variable y

k

, and each level ↵
`

, we
model the conditional ↵

`

-quantile given the other variables, using an additive expansion of the form:

Q
yk|y¬k

(↵
`

) = b⇤
`k

+

dX

j 6=k

f⇤
`kj

(y
j

), (3)

where b⇤
`k

2 R is an intercept term, and f⇤
`kj

, j = 1, . . . , d are smooth, but not parametric in form. In
its most general form, the MQGM estimator is defined as a collection of optimization problems, over
k = 1, . . . , d and ` = 1, . . . , r:

minimize
b`k, f`kj2F`kj ,

j=1,...,d

nX

i=1

 
↵`

✓
y
(i)

k

� b
`k

�
X

j 6=k

f
`kj

(y
(i)

j

)

◆
+

X

j 6=k

⇣
�
1

P
1

(f
`kj

) + �
2

P
2

(f
`kj

)

⌘
!

. (4)

Here �
1

,�
2

� 0 are tuning parameters, F
`kj

, j = 1, . . . , d are univariate function spaces, ! > 0 is
a fixed exponent, and P

1

, P
2

are sparsity and smoothness penalty functions, respectively. We give
three examples below; many other variants are also possible.

Example 1: basis expansion model Consider taking F
`kj

= span{�j
1

, . . . ,�j
m

}, the span of m
basis functions, e.g., radial basis functions (RBFs) with centers placed at appropriate locations across
the domain of variable j, for each j = 1, . . . , d. This means that each f

`kj

2 F
`kj

can be expressed
as f

`kj

(x) = ✓T
`kj

�j(x), for a coefficient vector ✓
`kj

2 Rm, where �j(x) = (�j
1

(x), . . . ,�j
m

(x)).
Also consider an exponent ! = 1, and the sparsity and smoothness penalties

P
1

(f
`kj

) = k✓
`kj

k
2

and P
2

(f
`kj

) = k✓
`kj

k2
2

,

respectively, which are group lasso and ridge penalties, respectively. With these choices in place, the
MQGM problem in (4) can be rewritten in finite-dimensional form:

minimize
b`k, ✓`k=(✓`k1,...,✓`kd)

 
↵`

⇣
Y
k

� b
`k

1� �✓
`k

⌘
+

X

j 6=k

⇣
�
1

k✓
`kj

k
2

+ �
2

k✓
`kj

k2
2

⌘
. (5)

Above, we have used the abbreviation  
↵`(z) =

P
n

i=1

 
↵`(zi) for a vector z = (z

1

, . . . , z
n

) 2 Rn,
and also Y

k

= (y
(1)

k

, . . . , y
(n)

k

) 2 Rn for the observations along variable k, 1 = (1, . . . , 1) 2 Rn, and
� 2 Rn⇥dm for the basis matrix, with blocks of columns to be understood as �

ij

= �(y
(i)

j

)

T 2 Rm.

The basis expansion model is simple and tends to work well in practice, so we focus on it for most of
the paper. In principle, essentially all our results apply to the next two models we describe, as well.

Example 2: smoothing splines model Now consider taking F
`kj

= span{gj
1

, . . . , gj
n

}, the span
of m = n natural cubic splines with knots at y(1)

j

, . . . , y
(n)

j

, for j = 1, . . . , d. As before, we can
then write f

`kj

(x) = ✓T
`kj

gj(x) with coefficients ✓
`kj

2 Rn, for f
`kj

2 F
`kj

. The work of [27], on
high-dimensional additive smoothing splines, suggests a choice of exponent ! = 1/2, and penalties

P
1

(f
`kj

) = kGj✓
`kj

k2
2

and P
2

(f
`kj

) = ✓T
`kj

⌦

j✓
`kj

,
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for sparsity and smoothness, respectively, where Gj 2 Rn⇥n is a spline basis matrix with entries
Gj

ii

0 = gj
i

0(y
(i)

j

), and ⌦

j is the smoothing spline penalty matrix containing integrated products of
pairs of twice differentiated basis functions. The MQGM problem in (4) can be translated into a
finite-dimensional form, very similar to what we have done in (5), but we omit this for brevity.

Example 3: RKHS model Consider taking F
`kj

= H
j

, a univariate reproducing kernel Hilbert
space (RKHS), with kernel function j(·, ·). The representer theorem allows us to express each
function f

`kj

2 H
j

in terms of the representers of evaluation, i.e., f
`kj

(x) =
P

n

i=1

(✓
`kj

)

i

j(x, y
(i)

j

),
for a coefficient vector ✓

`kj

2 Rn. The work of [34], on high-dimensional additive RKHS modeling,
suggests a choice of exponent ! = 1, and sparsity and smoothness penalties

P
1

(f
`kj

) = kKj✓
`kj

k
2

and P
2

(f
`kj

) =

q
✓T
`kj

Kj✓
`kj

,

respectively, where Kj 2 Rn⇥n is the kernel matrix with entries Kj

ii

0 = j(y
(i)

j

, y
(i

0
)

j

). Again, the
MQGM problem in (4) can be written in finite-dimensional form, now an SDP, omitted for brevity.

Structural constraints Several structural constraints can be placed on top of the MQGM op-
timization problem in order to guide the estimated component functions to meet particular shape
requirements. An important example are non-crossing constraints (commonplace in nonparametric,
multiple quantile regression [18, 38]): here, we optimize (4) jointly over ` = 1, . . . , r, subject to

b
`k

+

X

j 6=k

f
`kj

(y
(i)

j

)  b
`

0
k

+

X

j 6=k

f
`

0
kj

(y
(i)

j

), for all ↵
`

< ↵
`

0 , and i = 1, . . . , n. (6)

This ensures that the estimated quantiles obey the proper ordering, at the observations. For concrete-
ness, we consider the implications for the basis regression model, in Example 1 (similar statements
hold for the other two models). For each ` = 1, . . . , r, denote by F

`k

(b
`k

, ✓
`k

) the criterion in (5).
Introducing the non-crossing constraints requires coupling (5) over ` = 1, . . . , r, so that we now have
the following optimization problems, for each target variable k = 1, . . . , d:

minimize
Bk,⇥k

rX

`=1

F
`k

(b
`k

, ✓
`k

) subject to (1BT

k

+ �⇥

k

)DT � 0, (7)

where we denote B
k

= (b
1k

, . . . , b
rk

) 2 Rr, � 2 Rn⇥dm the basis matrix as before, ⇥
k

2 Rdm⇥r

given by column-stacking ✓
`k

2 Rdm, ` = 1, . . . , r, and D 2 R(r�1)⇥r is the usual discrete
difference operator. (The inequality in (7) is to be interpreted componentwise.) Computationally,
coupling the subproblems across ` = 1, . . . , r clearly adds to the overall difficulty of the MQGM, but
statistically this coupling acts as a regularizer, by constraining the parameter space in a useful way,
thus increasing our efficiency in fitting multiple quantile levels from the given data.

For a triplet `, k, j, monotonicity constraints are also easy to add, i.e., f
`kj

(y
(i)

j

)  f
`kj

(y
(i

0
)

j

) for all
y
(i)

j

< y
(i

0
)

j

. Convexity constraints, where we require f
`kj

to be convex over the observations, for a
particular `, k, j, are also straightforward. Lastly, strong non-crossing constraints, where we enforce
(6) over all z 2 Rd (not just over the observations) are also possible with positive basis functions.

Exogenous variables and conditional random fields So far, we have considered modeling the
joint distribution Pr(y

1

, . . . , y
d

), corresponding to learning a Markov random field (MRF). It is not
hard to extend our framework to model the conditional distribution Pr(y

1

, . . . , y
d

|x
1

, . . . , x
p

) given
some exogenous variables x

1

, . . . , x
p

, corresponding to learning a conditional random field (CRF).
To extend the basis regression model, we introduce the additional parameters ✓x

`k

2 Rp in (5), and the
loss now becomes  

↵`(Yk

� b
`k

1

T � �✓
`k

�X✓x
`k

), where X 2 Rn⇥q is filled with the exogenous
observations x(1), . . . , x(n) 2 Rq; the other models are changed similarly.

4 Basic properties and theory

4.1 Quantiles and conditional independence

In the model (3), when a particular variable y
j

has no contribution, i.e., satisfied f⇤
`kj

= 0 across all
quantile levels ↵

`

, ` = 1, . . . , r, what does this imply about the conditional independence between y
k

and y
j

, given the rest? Outside of the multivariate normal model (where the feature transformations
need only be linear), nothing can be said in generality. But we argue that conditional independence can
be understood in a certain approximate sense (i.e., in a projected approximation of the data generating
model). We begin with a simple lemma. Its proof is elementary, and given in the supplement.
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Lemma 4.1. Let U, V,W be random variables, and suppose that all conditional quantiles of U |V,W
do not depend on V , i.e., Q

U |V,W (↵) = Q
U |W (↵) for all ↵ 2 [0, 1]. Then U and V are conditionally

independent given W .

By the lemma, if we knew that Q
U |V,W (↵) = h(↵, U,W ) for a function h, then it would follow that

U, V are conditionally independent given W (n.b., the converse is true, as well). The MQGM problem
in (4), with sparsity imposed on the coefficients, essentially aims to achieve such a representation
for the conditional quantiles; of course we cannot use a fully nonparametric representation of the
conditional distribution y

k

|y¬k

and instead we use an r-step approximation to the conditional cumu-
lative distribution function (CDF) of y

k

|y¬k

(corresponding to estimating r conditional quantiles),
and (say) in the basis regression model, limit the dependence on conditioning variables to be in terms
of an additive function of RBFs in y

j

, j 6= k. Thus, if at the solution in (5) we find that ˆ✓
kj`

= 0,
` = 1, . . . , r, we may interpret this to mean that y

k

and y
j

are conditionally independent given the
remaining variables, but according to the distribution defined by the projection of y

k

|y¬k

onto the
space of models considered in (5) (r-step conditional CDFs, which are additive expansions in y

j

,
j 6= k). This interpretation is no more tenuous (arguably, less so, as the model space here is much
larger) than that needed when applying standard neighborhood selection to non-Gaussian data.

4.2 Gibbs sampling and the “joint” distribution

When specifying a form for the conditional distributions in a pseudolikelihood approximation as in
(2), it is natural to ask: what is the corresponding joint distribution? Unfortunately, for a general
collection of conditional distributions, there need not exist a compatible joint distribution, even
when all conditionals are continuous [41]. Still, pseudolikelihood approximations (a special case
of composite likelihood approximations), possess solid theoretical backing, in that maximizing the
pseudolikelihood relates closely to minimizing a certain (expected composite) Kullback-Leibler
divergence, measured to the true conditionals [39]. Recently, [7, 44] made nice progress in describing
specific conditions on conditional distributions that give rise to a valid joint distribution, though their
work was specific to exponential families. A practical answer to the question of this subsection is to
use Gibbs sampling, which attempts to draw samples consistent with the fitted conditionals; this is
precisely the observation of [13], who show that Gibbs sampling from discrete conditionals converges
to a unique stationary distribution, although this distribution may not actually be compatible with the
conditionals. The following result establishes the analogous claim for continuous conditionals; its
proof is in the supplement. We demonstrate the practical value of Gibbs sampling through various
examples in Section 6.
Lemma 4.2. Assume that the conditional distributions Pr(y

k

|y¬k

), k = 1, . . . , d take only positive
values on their domain. Then, for any given ordering of the variables, Gibbs sampling converges to a
unique stationary distribution that can be reached from any initial point. (This stationary distribution
depends on the ordering.)

4.3 Graph structure recovery

When log d = O(n2/21

), and we assume somewhat standard regularity conditions (listed as A1–A4
in the supplement), the MQGM estimate recovers the underlying conditional independencies with
high probability (interpreted in the projected model space, as explained in Section 4.1). Importantly,
we do not require a Gaussian, sub-Gaussian, or even parametric assumption on the data generating
process; instead, we assume i.i.d. draws y(1), . . . , y(n) 2 Rd, where the conditional distributions
y
k

|y¬k

have quantiles specified by the model in (3) for k = 1, . . . , d, ` = 1, . . . , r, and further, each
f⇤
`kj

(x) = ✓T
`kj

�j(x)⇤ for coefficients ✓⇤
`kj

2 Rm, j = 1, . . . , d, as in the basis expansion model.

Let E⇤ denote the corresponding edge set of conditional dependencies from these neighborhood
models, i.e., {k, j} 2 E⇤ () max

`=1,...,r

max{k✓⇤
`kj

k
2

, |✓⇤
`jk

k
2

} > 0. We define the estimated
edge set ˆE in the analogous way, based on the solution in (5). Without a loss of generality, we assume
the features have been scaled to satisfy k�

j

k  pn for all j = 1, . . . , dm. The following is our
recovery result; its proof is provided in the supplement.
Theorem 4.3. Assume log d = O(n2/21

), and conditions A1–A4 in the supplement. Assume that
the tuning parameters �

1

,�
2

satisfy �
1

⇣ (mn log(d2mr/�) log3 n)1/2 and �
2

= o(n41/42/✓⇤
max

),
where ✓⇤

max

= max

`,k,j

k✓⇤
`kj

k
2

. Then for n sufficiently large, the MQGM estimate in (5) exactly
recovers the underlying conditional dependencies, i.e., ˆE = E⇤, with probability at least 1� �.
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The theorem shows that the nonzero pattern in the MQGM estimate identifies, with high probability,
the underlying conditional independencies. But to be clear, we emphasize that the MQGM estimate
is not an estimate of the inverse covariance matrix itself (this is also true of neighborhood regression,
SpaceJam of [40], and many other methods for learning graphical models).

5 Computational approach

By design, the MQGM problem in (5) separates into d subproblems, across k = 1, . . . , d (it therefore
suffices to consider only a single subproblem, so we omit notational dependence on k for auxil-
iary variables). While these subproblems are challenging for off-the-shelf solvers (even for only
moderately-sized graphs), the key terms here all admit efficient proximal operators [32], which makes
operator splitting methods like the alternating direction method of multipliers [5] a natural choice.
As an illustration, we consider the non-crossing constraints in the basis regression model below.
Reparameterizing our problem, so that we may apply ADMM, yields:

minimize
⇥k,Bk,V,W,Z

 A(Z) + �
1

P
r

`=1

P
d

j=1

kW
`j

k
2

+

�2
2

kWk2
F

+ I
+

(V DT

)

subject to V = 1BT

k

+ �⇥

k

, W = ⇥

k

, Z = Y
k

1

T � 1BT

k

� �⇥

k

,
(8)

where for brevity  A(A) =

P
r

`=1

P
d

j=1

 
↵`(A`j), and I

+

(·) is the indicator function of the space
of elementwise nonnegative matrices. The augmented Lagrangian associated with (8) is:

L
⇢

(⇥

k

, B
k

, V,W,Z, U
V

, U
W

, U
Z

) =  A(Z) + �
1

rX

`=1

dX

j=1

kW
`j

k
2

+

�
2

2

kWk2
F

+ I
+

(V DT

)

+

⇢

2

⇣
k1BT

k

+ �⇥

k

� V + U
V

k2
F

+ k⇥
k

�W + U
W

k2
F

+ kY
k

1

T � 1BT

k

� �⇥

k

� Z + U
Z

k2
F

⌘
,

(9)
where ⇢ > 0 is the augmented Lagrangian parameter, and U

V

, U
W

, U
Z

are dual variables correspond-
ing to the equality constraints on V,W,Z, respectively. Minimizing (9) over V yields:

V  Piso
�
1BT

k

+ �⇥

k

+ U
V

�
, (10)

where Piso(·) denotes the row-wise projection operator onto the isotonic cone (the space of compo-
nentwise nondecreasing vectors), an O(nr) operation here [15]. Minimizing (9) over W

`j

yields the
update:

W
`j

 (⇥

k

)

`j

+ (U
W

)

`j

1 + �
2

/⇢

✓
1� �

1

/⇢

k(⇥
k

)

`j

+ (U
W

)

`j

k
2

◆

+

, (11)

where (·)
+

is the positive part operator. This can be seen by deriving the proximal operator of the
function f(x) = �

1

kxk
2

+ (�
2

/2)kxk2
2

. Minimizing (9) over Z yields the update:

Z  prox

(1/⇢) A(Yk

1

T � 1bT
k

� �⇥

k

+ U
Z

), (12)

where prox
f

(·) denotes the proximal operator of a function f . For the multiple quantile loss function
 A, this is a kind of generalized soft-thresholding. The proof is given in the supplement.
Lemma 5.1. Let P

+

(·) and P�(·) be the elementwise positive and negative part operators, respec-
tively, and let a = (↵

1

, . . . ,↵
r

). Then prox

t A(A) = P
+

(A� t1aT ) + P�(A� t1aT ).

Finally, differentiation in (9) with respect to B
k

and ⇥

k

yields the simultaneous updates:


⇥

k

BT

k

�
 1

2


�

T

�+

1

2

I �

T

1

1

T

� 1

T

1

��1

✓
[I 0]

T

(W � U
W

) +

[� 1]

T

(Y
k

1

T � Z + U
Z

+ V � U
V

)

◆
. (13)

A complete description of our ADMM algorithm for solving the MQGM problem is in the supplement.

Gibbs sampling Having fit the conditionals y
k

|y¬k

, k = 1, . . . d, we may want to make predictions
or extract joint distributions over subsets of variables. As discussed in Section 4.2, there is no general
analytic form for these joint distributions, but the pseudolikelihood approximation underlying the
MQGM suggests a natural Gibbs sampler. A careful implementation that respects the additive model
in (3) yields a highly efficient Gibbs sampler, especially for CRFs; the supplement gives details.

6



6 Empirical examples

6.1 Synthetic data

We consider synthetic examples, comparing the MQGM to neighborhood selection (MB), the graphi-
cal lasso (GLasso), SpaceJam [40], the nonparanormal skeptic [26], TIGER [24], and neighborhood
selection using the absolute loss (Laplace).

Ring example As a simple but telling example, we drew n = 400 samples from a “ring” distribution
in d = 4 dimensions. Data were generated by drawing a random angle ⌫ ⇠ Uniform(0, 1), a random
radius R ⇠ N (0, 0.1), and then computing the coordinates y

1

= R cos ⌫, y
2

= R sin ⌫ and
y
3

, y
4

⇠ N (0, 1), i.e., y
1

and y
2

are the only dependent variables here. The MQGM was used with
m = 10 basis functions (RBFs), and r = 20 quantile levels. The left panel of Figure 1 plots samples
(blue) of the coordinates y

1

, y
2

as well as new samples from the MQGM (red) fitted to these same
(blue) samples, obtained by using our Gibbs sampler; the samples from the MQGM appear to closely
match the samples from the underlying ring. The main panel of Figure 1 shows the conditional
dependencies recovered by the MQGM, SpaceJam, GLasso, and MB (plots for the other methods are
given in the supplement), when run on the ring data. We visualize these dependencies by forming a
d⇥ d matrix with the cell (j, k) set to black if j, k are conditionally dependent given the others, and
white otherwise. Across a range of tuning parameters for each method, the MQGM is the only one
that successfully recovers the underlying conditional dependencies, at some point along its solution
path. In the supplement, we present an evaluation of the conditional CDFs given by each method,
when run on the ring data; again, the MQGM performs best in this setting.

Larger examples To investigate performance at larger scales, we drew n 2 {50, 100, 300} samples
from a multivariate normal and Student t-distribution (with 3 degrees of freedom), both in d = 100

dimensions, both parameterized by a random, sparse, diagonally dominant d⇥ d inverse covariance
matrix, following the procedure in [33, 17, 31, 1]. Over the same set of sample sizes, with d = 100, we
also considered an autoregressive setup in which we drew samples of pairs of adjacent variables from
the ring distribution. In all three data settings (normal, t, and autoregressive), we used m = 10 and
r = 20 for the MQGM. To summarize the performances, we considered a range of tuning parameters
for each method, computed corresponding false and true positive rates (in detecting conditional
dependencies), and then computed the corresponding area under the curve (AUC), following, e.g.,
[33, 17, 31, 1]. Table 1 reports the median AUCs (across 50 trials) for all three of these examples; the
MQGM outperforms all other methods on the autoregressive example; on the normal and Student t
examples, it performs quite competitively.
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Figure 1: Left: data from the ring distribution (blue) as well as new samples from the MQGM (red) fitted to
the same (blue) data, obtained by using our Gibbs sampler. Right: conditional dependencies recovered by the
MQGM, MB, GLasso, and SpaceJam on the ring data; black means conditional dependence. The MQGM is the
only method that successfully recovers the underlying conditional dependencies along its solution path.

Table 1: AUC values for the MQGM, MB, GLasso, SpaceJam, the nonparanormal skeptic, TIGER, and
Laplace for the normal, t, and autoregressive data settings; higher is better, best in bold.

Normal Student t Autoregressive
n = 50 n = 100 n = 300 n = 50 n = 100 n = 300 n = 50 n = 100 n = 300

MQGM 0.953 0.976 0.988 0.928 0.947 0.981 0.726 0.754 0.955
MB 0.850 0.959 0.994 0.844 0.923 0.988 0.532 0.563 0.725
GLasso 0.908 0.964 0.998 0.691 0.605 0.965 0.541 0.620 0.711
SpaceJam 0.889 0.968 0.997 0.893 0.965 0.993 0.624 0.708 0.854
Nonpara. 0.881 0.962 0.996 0.862 0.942 0.998 0.545 0.590 0.612
TIGER 0.732 0.921 0.996 0.420 0.873 0.989 0.503 0.518 0.718
Laplace 0.803 0.931 0.989 0.800 0.876 0.991 0.530 0.554 0.758
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Figure 2: Top panel and bottom row,
middle panel: conditional dependen-
cies recovered by the MQGM on the
flu data; each of the first ten cells corre-
sponds to a region of the U.S., and black
means dependence. Bottom row, left
panel: wallclock time (in seconds) for
solving one subproblem using ADMM
versus SCS. Bottom row, right panel:
samples from the fitted marginal distri-
bution of the weekly flu incidence rates
at region 6; samples at larger quantiles
are shaded lighter, and the median is in
darker blue.

6.2 Modeling flu epidemics

We study n = 937 weekly flu incidence reports from September 28, 1997 through August 30,
2015, across 10 regions in the United States (see the top panel of Figure 2), obtained from [6]. We
considered d = 20 variables: the first 10 encode the current week’s flu incidence (precisely, the
percentage of doctor’s visits in which flu-like symptoms are presented) in the 10 regions, and the last
10 encode the same but for the prior week. We set m = 5, r = 99, and also introduced exogenous
variables to encode the week numbers, so p = 1. Thus, learning the MQGM here corresponds
to learning the structure of a spatiotemporal graphical model, and reduces to solving 20 multiple
quantile regression subproblems, each of dimension (19⇥ 5 + 1)⇥ 99 = 9504. All subproblems
took about 1 minute on a 6 core 3.3 Ghz Core i7 X980 processor.

The bottom left panel in Figure 2 plots the time (in seconds) taken for solving one subproblem using
ADMM versus SCS [30], a cone solver that has been advocated as a reasonable choice for a class
of problems encapsulating (4); ADMM outperforms SCS by roughly two orders of magnitude. The
bottom middle panel of Figure 2 presents the conditional independencies recovered by the MQGM.
Nonzero entries in the upper left 10 ⇥ 10 submatrix correspond to dependencies between the y

k

variables for k = 1, . . . , 10; e.g., the nonzero (0,2) entry suggests that region 1 and 3’s flu reports are
dependent. The lower right 10⇥ 10 submatrix corresponds to the y

k

variables for k = 11, . . . , 20,
and the nonzero banded entries suggest that at any region the previous week’s flu incidence (naturally)
influences the next week’s. The top panel of Figure 2 visualizes these relationships by drawing an
edge between dependent regions; region 6 is highly connected, suggesting that it may be a bellwether
for other regions, roughly in keeping with the current understanding of flu dynamics. To draw samples
from the fitted distributions, we ran our Gibbs sampler over the year, generating 1000 total samples,
making 5 passes over all coordinates between each sample, and with a burn-in period of 100 iterations.
The bottom right panel of Figure 2 plots samples from the marginal distribution of the percentages
of flu reports at region 6 (other regions are in the supplement) throughout the year, revealing the
heteroskedastic nature of the data.

For space reasons, our last example, on wind power data, is presented in the supplement.

7 Discussion

We proposed and studied the Multiple Quantile Graphical Model (MQGM). We established theoretical
and empirical backing to the claim that the MQGM is capable of compactly representing relationships
between heteroskedastic non-Gaussian variables. We also developed efficient algorithms for both
estimation and sampling in the MQGM. All in all, we believe that our work represents a step forward
in the design of flexible yet tractable graphical models.

Acknowledgements AA was supported by DOE Computational Science Graduate Fellowship DE-
FG02-97ER25308. JZK was supported by an NSF Expeditions in Computation Award, CompSustNet,
CCF-1522054. RJT was supported by NSF Grants DMS-1309174 and DMS-1554123.
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preceded by the letter S (all numbering without an S refers to the main paper).

S.1 Proof of Lemma 4.1

If the conditional quantiles satisfy Q
U |V,W (↵) = Q

U |W (↵) for all ↵ 2 [0, 1], then the conditional
CDF must obey the same property, i.e., F

U |V,W (t) = F
U |W (t) for all t in the support of U . This

is simply because any CDF may be expressed in terms of its corresponding quantile function (i.e.,
inverse CDF), as in

F
U |V,W (t) = sup{↵ 2 [0, 1] : Q

U |V,W (↵)  t},
and the right-hand side does not depend on V , so neither can the left-hand side. But this precisely im-
plies that the distribution of U |V,W equals that of U |W , i.e., U and V are conditionally independent
given W . We note that the converse of the statement in the lemma is true as well, by just reversing all
the arguments here.

S.2 Proof of Lemma 4.2

This result can be seen as a generalization of Theorem 3 in [5].

First, we define an iteration of Gibbs sampling to be a single pass through all the variables (without a
loss of generality, we take this order to be y

1

, . . . , y
d

). Now, consider a particular iteration of Gibbs
sampling; let ỹ

1

, . . . , ỹ
d

be the values assigned to the variables on the previous iteration. Then the
transition kernel for our Gibbs sampler is given by

Pr(y
1

, . . . , y
d

|ỹ
1

, . . . , ỹ
d

) = Pr(y
d

|y
d�1

, . . . , y
1

, ỹ
1

, . . . , ỹ
d

)Pr(y
d�1

, . . . , y
1

|ỹ
1

, . . . , ỹ
d

) (S.1)
= Pr(y

d

|y
d�1

, . . . , y
1

)Pr(y
d�1

, . . . , y
1

|ỹ
1

, . . . , ỹ
d

) (S.2)
= Pr(y

d

|y
d�1

, . . . , y
1

)Pr(y
d�1

|y
d�2

, . . . y
1

, ỹ
d

) · · ·Pr(y
1

|ỹ
2

, . . . , ỹ
d

),
(S.3)

where (S.1) follows by the definition of conditional probability, (S.2) by conditional independence,
and (S.3) by repeated applications of these tools. Since each conditional distribution is assumed
to be (strictly) positive, we have that the transition kernel is also positive, which in turn implies [2,
page 544] that the induced Markov chain is ergodic with a unique stationary distribution that can be
reached from any initial point.

S.3 Statement and discussion of regularity conditions for Theorem 4.3

For each k = 1, . . . , r, ` = 1, . . . , r, let us define the “effective” (independent) error terms
✏
`ki

= y
(i)

k

� b⇤
`k

�
P

j 6=k

�(y
(i)

j

)

T ✓⇤
`kj

, over i = 1, . . . , n. Denote by F
✏`k the conditional CDF of
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✏
`ki

|y(i)¬k

, i = 1, . . . , n, which by construction satisfies F
✏`k(0) = ↵

`

. Also define the underlying
support

S
`k

=

�
j 2 {1, . . . , d} : ✓⇤

`kj

6= 0

 
.

Here we take a moment to explain a somewhat subtle indexing issue with the columns of the feature
matrix � 2 Rn⇥dm. For a single fixed index j = 1, . . . , d, we will extract an appropriate block of
columns of � 2 Rn⇥dm, corresponding to the basis expansion of variable j, by writing �

j

. More
precisely, we use �

j

to denote the block of m columns

[�

(j�1)m+1

,�
(j�1)m+2

, . . . ,�
jm

]. (S.4)

We do this because it simplifies notation considerably. (Occasionally, to be transparent, we will use
the more exhaustive notation on the right-hand side in (S.4), but this is to be treated as an exception,
and the default is to use the concise notation as in �

j

.) The same rule will be used for subsets of
indices among 1, . . . , d, so that �

S`k denotes the appropriate block of m|S
`k

| columns corresponding
to the basis expansions of the variables in S

`k

.

For all k = 1, . . . , d, ` = 1, . . . , r, we will assume the following regularity conditions.

A1. Groupwise irrepresentability: for j 2 Sc

`k

, we require that k�T

j

�

S`kkF < �
1

/(6f
✏`k(0)�),

where S
`k

= {j 2 {1, . . . , dm} : ✓⇤
`kj

6= 0}, f
✏`k is the density of F

✏`k , and � > 0 is a
quantity prescribed by Lemma S.5.

A2. Distributional smoothness: we assume that |F
✏`k(x)� F

✏`k(0)� xf
✏`k(0)|  C

1

x2 for all
|x|  C

2

, where C
1

, C
2

> 0 are constants.
A3. Correlation restriction: we assume that C

3

 (f
✏`k(0)/n)�min

(�

T

S`k
�

S`k)  C
4

for con-
stants C

3

, C
4

> 0, where �
min

(A) denotes the minimum eigenvalue of A.

A4. Basis and support size restrictions: we assume that m = O(n1/9

) and s = O(n1/21

),
where s = |S

`k

|. We also assume, with probability tending to one, that �
max

= ⌦(1) and
�

max

= o(n1/21/ log1/2 n), where we write �

max

to denote the maximum absolute entry
of the basis matrix �.

Next, we provide some intuition for these conditions.

Condition A1. Fix some j 2 Sc

`k

. For notational convenience, we let

A = �

T

j

�

S`k 2 Rm⇥sm.

Observe that each entry of A can be expressed as

A
ip

= n⇢
i,p

k�
(j�1)m+i

k
2

k�
p

k
2

, (S.5)

for i = 1, . . . ,m, p denoting an index into the basis expansion of the columns �
S`k , and ⇢

i,p

denoting
the sample correlation coefficient for the columns �

i

and �

p

. Since kA
p

k
F


p
mkA

p

k1, we have
that

max

i,p

⇢
i,p

<
�
1

6n2f
✏`k(0)

p
m

is sufficient for condition A1; here, we have also used the column scaling assumption k�
p

k
2


p
n.

So, roughly speaking, bounded correlation between each pair of columns in the submatrices �

j

and �

S`k is enough for condition A1 to hold; note that this is trivially satisfied when �

T

i

�

p

= 0,
for i = 1, . . . ,m, and p as defined above. Condition A1 is therefore similar to, e.g., the mutual
incoherence condition of [7] for the lasso, which is given by

����T

S

c�
S

�
�

T

S

�

S

��1

���
1

 1� �̃ () max

j2S

c

���
�
�

T

S

�

S

��1

�

T

S

�

j

���
1

 1� �̃,

where again �

S

extracts the appropriate block of columns of �, k · k1 here denotes the `1 operator
norm (maximum `

1

norm of a row), k · k
1

here denotes the elementwise `
1

norm, and �̃ 2 (0, 1] is a
constant. This condition can be seen as requiring bounded correlation between each column in the
submatrix �

S

c and all columns in the submatrix �

S

.
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Condition A2. This condition is similar to requiring that f
✏`k(x) be Lipschitz, over some x in a

neighborhood of 0. We can show that the Laplace distribution, e.g., satisfies this condition.

The density and distribution functions for the Laplace distribution with location zero and unit scale
are given by

f
✏`k(x) = (1/2) exp(�|x|)

and

F
✏`k(x) =

⇢
1� (1/2) exp(�x) if x � 0

(1/2) exp(x) if x < 0,

respectively.

Now, suppose 0  x  C
2

. Then we can express condition A2 as

|f
✏`k(x)� f

✏`k(0)� xf
✏`k(0)|  C

1

x2 () �2C
1

x2  exp(�x) + x� 1  2C
1

x2.

For the first inequality, since 1� x  exp(�x), it is sufficient to check that 0  C
1

x2, which is true
for C

1

> 0 and all x. For the second inequality, by differentiating and again using 1� x  exp(�x),
we have that the function

2C
1

x2 � exp(�x)� x+ 1 (S.6)
is nondecreasing in x � 0; thus, it is sufficient to check that this function is nonnegative for x = 0,
which is true.

Now, suppose �C
2

 x < 0. Then we can express condition A2 as

|f
✏`k(x)� f

✏`k(0)� xf
✏`k(0)|  C

1

x2 () �2C
1

x2  exp(x)� x� 1  2C
1

x2.

By symmetry with the preceding case, the first inequality here holds. The second inequality here also
holds, since exp(x)� 2C

1

x2 � x� 1 is continuous and increasing in x < 0; taking the limit as x " 0

gives that this function is nonpositive as required.

Condition A3. This condition is a generalization of the minimum eigenvalue condition of [7], i.e.,
c
min

 �
min

�
(1/n)�T

S

�

S

�
, for some constant c

min

> 0, and where we write �

S

to extract the
appropriate block of columns of �.

Condition A4. This condition allows the number of basis functions m in the expansion to grow with n,
at a polynomial rate (with fractional exponent). This is roughly in line with standard nonparametric
regression; e.g., when estimating a continuous differentiable function via a spline expansion, one
typically takes the number of basis functions m to scale as n1/3 [4]. The condition also restricts,
for any given variable, the number of variables s that contribute to its neighborhood model to be
polynomial in n (with a smaller fractional exponent).

Finally, the condition assumes that the entries of the basis matrix � (i.e., the matrix of transformed
variables) to be at least of constant order, and at most of polynomial order (with small fractional
exponent), with n. We note that this implicitly places a restriction on the tails of distribution governing
the data y

(i)

j

, i = 1, . . . , n, j = 1, . . . , d. However, the restriction is not a strong one, because it
allows the maximum to grow polynomially large with n (whereas a logarithmic growth would be
expected, e.g., for normal data). Furthermore, it is possible to trade off the restrictions on m, s, �

max

,
and d (presented in the statement of the theorem), making each of these restrictions more or less
stringent, if required.

S.4 Proof of Theorem 4.3

The general strategy that we use here for support recovery is inspired by that in [3], for `
1

-penalized
quantile regression.

Fix some k = 1, . . . , d and ` = 1, . . . , r. We consider the conditional distribution y
k

|y¬k

, whose
↵
`

-quantile is assumed to satisfy (3). Hence, to be perfectly clear, all expectations and probability
statements in what follows are to be interpreted with respect to the observations y(i)

k

, i = 1, . . . , n
conditional on y

(i)

j

, i = 1, . . . , n, for j 6= k (and thus we can treat the feature matrix � as fixed

3



throughout). In the setting assumed by the theorem, the conditional quantile model in (3) is, more
explicitly,

Q
yk|y¬k

(↵
`

) = b⇤
`k

+

dX

j 6=k

(✓⇤
`kj

)

T�j(y
j

),

for some unknown parameters b⇤
`k

and ✓⇤
`kj

, j = 1, . . . , d. For simplicity, in this proof, we will drop
the intercept term completely both from the model (denoted b⇤

`k

) and the optimization problem in (4)
(here denoted b

`k

) that defines the estimator in question. Including the intercept is not at all difficult,
and it just requires some extra bookkeeping at various places. Recall that we define

S
`k

=

�
j 2 {1, . . . , d} : ✓⇤

`kj

6= 0

 
,

and analogously define
ˆS
`k

=

�
j 2 {1, . . . , d} :

ˆ✓
`kj

6= 0

 
,

where ˆ✓
`k

= (

ˆ✓
`k1

, . . . , ˆ✓
`kd

) 2 Rdm is the solution in (5).

We will show that, with probability at least 1� �/(dr), it holds that S
`k

=

ˆS
`k

. A union bound (over
all choices k = 1, . . . , d and ` = 1, . . . , r) will then tell us that E⇤

=

ˆE with probability at least
1� �, completing the proof.

To certify that S
`k

=

ˆS
`k

, we will show that the unique solution in (5) is given by

ˆ✓
`k(S`k)

=

˜✓
`k(S`k)

, ˆ✓
`k(S

c
`k)

= 0, (S.7)

where ˜✓
`k(S`k)

solves the “restricted” optimization problem:

minimize
✓`k(S`k)

 
↵`

⇣
Y
k

� �

S`k✓`k(S`k)

⌘
+ �

1

X

j2S`k

k✓
`kj

k
2

+

�
2

2

k✓
`k(S`k)

k2
2

. (S.8)

Now, to prove that ˆ✓
`k

as defined above in (S.7) indeed the solution in (5), we need to check that it
satisfies the KKT conditions for (5), namely

�

T

S`k
v
`

⇣
Y
k

� �

S`k
˜✓
`k(S`k)

⌘
� �

2

˜✓
`k(S`k)

= �
1

u
`k(S`k)

, (S.9)

�

T

S

c
`k
v
`

⇣
Y
k

� �

S`k
˜✓
`k(S`k)

⌘
= �

1

u
`k(S

c
`k)

, (S.10)

where v
`

(Y
k

� �

S`k
˜✓
`k(S`k)

) 2 Rn is a subgradient of  
↵`(·) at Y

k

� �

S`k
˜✓
`k(S`k)

, i.e.,
h
v
`

⇣
Y
k

� �

S`k
˜✓
`k(S`k)

⌘i

i

= ↵
`

� I�

⇣
y
(i)

k

� �

i(S`k)
˜✓
`k(S`k)

⌘
, i = 1, . . . , n

where I�(·) is the indicator function of the nonpositive real line, and where each u
`kj

2 Rm is a
subgradient of k · k

2

at ˜✓
`kj

, i.e.,

u
`kj

2
⇢
{˜✓

`kj

/k˜✓
`kj

k
2

} if ✓
`kj

6= 0

{x 2 Rm

: kxk
2

 1} if ✓
`kj

= 0,

for j = 1, . . . , d. Note that, since ˜✓
`k(S`k)

is optimal for the restricted problem (S.8), we know that
there exists a collection of subgradients u

`k(S`k)
to satisfy (S.9), from the KKT conditions for (S.8)

itself.

It remains to satisfy (S.10), and for this, we can use u
`kj

= �

T

j

v
`

(Y
k

� �

S`k
˜✓
`k(S`k)

) as a valid
choice of subgradient, for each j 2 Sc

`k

, provided that
����T

j

v
`

⇣
Y
k

� �

S`k
˜✓
`k(S`k)

⌘���
2

< �
1

, for j 2 Sc

`k

. (S.11)

Define z
j

(#) = �

T

j

v
`

(Y
k

� �

S`k#), for j 2 Sc

`k

, and define a ball

B⇤
=

�
# 2 Rsm

: k#� ✓⇤
`k(S`k)

k
2

 �
 
,

where we write s = |S
`k

|. To show (S.11), then, it suffices to show that

˜✓
`k(S`k)

2 B⇤

| {z }
E1

, and max

j2S

c
`k

sup

#2B

⇤
kz

j

(#)k
2

< �
1

| {z }
E2

. (S.12)
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In Lemma S.5.1, given in Section S.5, it is shown that the event E
1

defined above occurs with
probability at least 1� �/(2dr), with a choice of radius

� = C

 
�
1

s
p
m

n
+

r
s log n

n

!
,

for a constant C > 0. Below we show that E
2

occurs with probability at least 1� �/(2dr), as well.

For j = 1, . . . , d, let us expand

z
j

(#) = �

T

j

v
`

(✏
`k

)

| {z }
�

j
1

+�

T

j

E

h
v
`

⇣
Y
k

� �

S`k#
⌘
� v

`

(✏
`k

)

i

| {z }
�

j
2

+

�

T

j

✓
v
`

⇣
Y
k

� �

S`k#)� v
`

(✏
`k

⌘
�E

h
v
`

(Y
k

� �

S`k#)� v
`

(✏
`k

)

i◆

| {z }
�

j
3

, (S.13)

where ✏
`k

= (✏
`k1

, . . . , ✏
`kn

) 2 Rn is a vector of the effective error terms, which recall, is defined by
✏
`k

= Y
k

� �✓⇤
`k

. Therefore, to show that the event E
2

in (S.12) holds, we can show that for each
p = 1, 2, 3,

max

j2S

c
`k

sup

#2B

⇤
k�j

p

k
2

<
�
1

3

.

Further, to show that E
2

holds with probability at least 1��/(2dr), we can show that the above holds
for p = 1, 3 each with probability at least 1� �/(4dr), as the statement for p = 2 is deterministic.
We now bound the terms �j

1

,�j

2

,�j

3

one by one.

Bounding k�j

1

k
2

. Fix j 2 Sc

`k

, and write

�

T

j

v
`

(✏
`k

) =

✓
nX

i=1

�

i,(j�1)m+1

v
`

(✏
`ki

), . . . ,

nX

i=1

�

i,jm

v
`

(✏
`ki

)

◆
,

where, as a reminder that the above quantity is a vector, we have returned momentarily to the more
exhaustive notation for indexing the columns of �, as in the right-hand side of (S.4).

Straightforward calculations reveal that, for each i = 1, . . . , n, and p = 1, . . . ,m,

E�

i,(j�1)m+p

v
`

(✏
`ki

) = 0, and � |�
i,(j�1)m+p

|  �

i,(j�1)m+p

v
`

(✏
`ki

)  |�
i,(j�1)m+p

|.

Hence,

Pr

⇣
k�T

j

v
`

(✏
`ki

)k
2

�
p
mt
⌘
 Pr

✓����
nX

i=1

�

i,(j�1)m+p

v
`

(✏
`ki

)

���� � t, some p = 1, . . . ,m

◆


mX

p=1

2 exp

✓
� t2

2

P
n

i=1

�

2

i,(j�1)m+p

◆

 2m exp

✓
� t2

2n

◆
.

Above, the first inequality used the simple fact that kxk
2


p
mkxk1 for x 2 Rm; the second used

Hoeffding’s bound and the union bound; and the third used our assumption that the columns of �
have norm at most

p
n. Therefore, taking t = �

1

/(3
p
m), we see that, by the above and the union

bound,

Pr

✓
max

j2S

c
`k

k�j

1

k
2

<
�
1

3

◆
� 1� 2dm exp

✓
� �2

1

18mn

◆
.

By choosing �
1

= C 0
p
18mn log(8d2mr/�) for a constant C 0 > 0, we see that the probability in

question is at least 1� �/(4dr), as desired.
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Bounding k�j

2

k
2

. Recall that F
✏`k(·) is used to denote the CDF of the effective error distribution,

and f
✏`k(·) is used for its its density. By construction, F

✏`k(0) = ↵
`

. Direct calculation, using the
definition of v

`

(·), shows that, for any # 2 B⇤, and each i = 1, . . . , n,

E

h
v
`

(✏
`k

)� v
`

⇣
Y
k

� �

S`k#
⌘i

= F
✏`k

⇣
�

S`k

�
#� ✓⇤

`k(S`k)

�⌘
� F

✏`k(0),

where we apply F
✏`k componentwise, and so

�

T

j

E

h
v
`

(✏
`k

)� v
`

⇣
Y
k

� �

S`k#
⌘i

= f
✏`k(0)�

T

j

�

S`k

�
#� ✓⇤

`k(S`k)

�
+�

j

4

with �

j

4

2 Rm being the appropriate remainder term, i.e.,

h
�

j

4

i

t

=

nX

i=1

�

it

h
F
✏`k

⇣
�

i(S`k)

�
#� ✓⇤

`k(S`k)

�⌘
� F

✏`k(0)� f
✏`k(0)�i(S`k)

�
#� ✓⇤

`k(S`k)

�i
,

for t = j(m� 1) + 1, . . . , jm.

Now, we have that
��f

✏`k(0)�
T

j

�

S`k

�
#� ✓⇤

`k(S`k)

���
2

 f
✏`k(0)

��
�

T

j

�

S`k

��
F

��#� ✓⇤
`k(S`k)

��
2

 �
1

6

,

where we have used k#� ✓⇤
`k(S`k)

k
2

 � and the groupwise irrepresentability condition in A1.

We also have the following two facts, which we will use momentarily:

�

3

max

ns�2

= o(�
1

) (S.14)
p
s�

max

� ! 0. (S.15)

Note that (S.14) can be obtained as follows. Since (1/2)(x+ y)2  x2

+ y2 for x, y 2 R, we can
plug in

� = C

 
�
1

s
p
m

n
+

r
s log n

n

!
,

and check that both terms on the right-hand side of

�

3

max

ns

�
1

✓
�2

1

s2m

n2

+

s log n

n

◆
=

�

3

max

s3�
1

m

n
+

�

3

max

s2 log n

�
1

tend to zero. For the first term on the right-hand side, it is enough to show that

�

6

max

s6m3

log(d2mr)(log3 n)/n ! 0,

where we have plugged in �
1

= C 0
q
mn log(d2mr/�) log3 n. Using the assumptions in condition

A4, we get that log(d2mr) = O(log d+ logm) = O(n2/21

), and furthermore that

�

6

max

s6m3

log(d2mr)(log3 n)/n = o

✓
n1/3 · n2/21 · n6/21 · n6/21

log

3 n

◆
log

3 n

n
! 0,

as required. A similar calculation shows that the second term on the right-hand side also tends to
zero, i.e., �3

max

s2(log n)/�
1

! 0, which establishes (S.14). Lastly, (S.15) follows since its left-hand
side is dominated by the left-hand side of (S.14).

So, we now compute

k�j

4

k
2


p
mmax

t

nX

i=1

�����it

h
F
✏`k

⇣
�

i(S`k)

�
#� ✓⇤

`k(S`k)

�⌘
�

F
✏`k(0)� f

✏`k(0)�i(S`k)

�
#� ✓⇤

`k(S`k)

�i����

 C
1

�

max

p
m

nX

i=1

⇣
�

i(S`k)

�
#� ✓⇤

`k(S`k)

�⌘2
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 C
1

�

max

p
m

nX

i=1

k�
i(S`k)

k2
2

k#� ✓⇤
`k(S`k)

k2
2

 C
1

�

3

max

p
mns�2

= o(�
1

).

Here the first inequality follows from the fact that kxk
2


p
mkxk1 for x 2 Rm, and the triangle

inequality; the second follows from the distributional smoothness condition in A2, which is applicable
since (S.15) holds; the third uses Cauchy-Schwarz; the fourth uses our column norm assumption on
�, and k#� ✓⇤

`k(S`k)
k
2

 �; the last uses (S.14). As k�j

4

k
2

= o(�
1

), it will certainly be strictly less
than �

1

/6 for n large enough. We have hence shown, noting that none of our above arguments have
depended on the particular choice of j = 1, . . . , d or # 2 B⇤,

max

j2S

c
`k

sup

#2B

⇤
k�j

2

k
2

<
�
1

3

.

Bounding k�j

3

k
2

. For this part, we can use the end of the proof of Lemma 2 in [3], which uses classic
entropy-based techniques to establish a bound very similar to that which we are seeking. By carefully
looking at the conditions required for this lemma, we see that under the distributional smoothness
condition in A2, condition A3, and also

p
n log(dm) = o(�

1

)

n�
max

�2

= o(�
1

)

(1 + ��2

max

s3/2) log2 n = o(�2

1

/n),

all following directly from condition A4 by calculations similar to the ones we used when bounding
k�j

2

k, we have

Pr

✓
max

j2S

c
`k

sup

#2B

⇤
k�j

3

k
2

� �
1

3

◆
 Pr

✓
max

j2S

c
`k

sup

#2B

⇤
k�j

3

k1 � �
1

3

p
m

◆
;

the probability on the right-hand side can be made arbitrarily small for large n, by the arguments at
the end of Lemma 2 in [3], and hence clearly smaller than the desired �/(4dr) level.

Putting it together. Returning to the logic in (S.11), (S.12), (S.13), we have shown that the subgradient
condition in (S.11) holds with probability at least 1� (�/(2dr) + �/(4dr) + �/(4dr)) = 1� �/(dr).
Taking a union bound over k = 1, . . . , d and ` = 1, . . . , r, which were considered fixed at the start of
our analysis, gives the result stated in the theorem.

S.5 Statement and proof of Lemma S.5.1

We show that with probability at least 1� �/(2dr), it holds that ˜✓
`k(S`k)

2 B⇤, where ˜✓
`k(S`k)

is the
solution to the restricted problem (S.8), for some fixed k = 1, . . . , d and ` = 1, . . . , r, and B⇤ is a
ball defined in the proof of Theorem 4.3 in Section S.4. This fact is used a few times in the proof of
Theorem 4.3.
Lemma S.5.1. Fix some k = 1, . . . , d and ` = 1, . . . , r. Define the ball

B⇤
= {# 2 Rsm

: k#� ✓⇤
`k(S`k)

k
2

 �}

centered at the underlying coefficients ✓⇤
`k(S`k)

with radius

� = C

 
�
1

s
p
m

n
+

r
s log n

n

!
,

for some constant C > 0. Then, with probability at least 1� �/(2dr), it holds that

˜✓
`k(S`k)

2 B⇤
,

where

˜✓
`k(S`k)

is the solution to the restricted problem (S.8).
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Proof. We will follow the strategy for the proof of Theorem 1 in [3] closely. We begin by considering
the ball

B = {# 2 Rsm

: k#� ✓⇤
`k(S`k)

k
2

 R}
with center ✓⇤

`k(S`k)
and radius R. We also introduce some useful notational shorthand, and write the

quantile loss term in the restricted problem (S.8) as

L
`k

(#) =  
↵` (Yk

� �

S`k#) .

Below, we show that a particular function of R serves as an upper bound for the quantity
E[L

`k

(

˜#
`k(S`k)

)� L
`k

(✓⇤
`k(S`k)

)], where the expectation here is taken over draws of the data, and
˜#
`k(S`k)

is a particular point in B that we define in a moment. This in turn implies, with probability
at least 1� �/(2dr), that ˜✓

`k(S`k)
2 B⇤, as claimed.

First, we define ˜#
`k(S`k)

more precisely: it is a point on the line segment between the solution to the
restricted problem ˜✓

`k(S`k)
and the underlying coefficients ✓⇤

`k(S`k)
, i.e.,

˜#
`k(S`k)

= �˜✓
`k(S`k)

+ (1� �)✓⇤
`k(S`k)

,

for a particular choice

� =

R

R+ k˜✓
`k(S`k)

� ✓⇤
`k(S`k)

k
2

,

which guarantees that ˜#
`k(S`k)

2 B even if ˜✓
`k(S`k)

/2 B , as we establish next. Observe that we
always have

k˜✓
`k(S`k)

� ✓⇤
`k(S`k)

k
2

 R+ k˜✓
`k(S`k)

� ✓⇤
`k(S`k)

k
2

() R
k˜✓

`k(S`k)
� ✓⇤

`k(S`k)
k
2

R+ k˜✓
`k(S`k)

� ✓⇤
`k(S`k)

k
2

 R

() �k˜✓
`k(S`k)

� ✓⇤
`k(S`k)

k
2

 R

() k�˜✓
`k(S`k)

� �✓⇤
`k(S`k)

+ ✓⇤
`k(S`k)

� ✓⇤
`k(S`k)

k
2

 R

() k˜#
`k(S`k)

� ✓⇤
`k(S`k)

k
2

 R,

as claimed. The second line here follows by rearranging and multiplying through by R; the third by
using the definition of � above; the fourth by adding and subtracting the underlying coefficients; and
the fifth by using the definition of ˜#

`k(S`k)
.

Now, the beginning of the proof of Theorem 1 in [3] establishes, for any ˜#
`k(S`k)

2 B, for some
constant C

5

> 0, and using condition A3, that

E

h
L
`k

(

˜#
`k(S`k)

)� L
`k

(✓⇤
`k(S`k)

)

i
� C

5

nk˜#
`k(S`k)

� ✓⇤
`k(S`k)

k2
2

, (S.16)

and so, by direct calculation, since

k˜#
`k(S`k)

�✓⇤
`k(S`k)

k
2

 R () �k˜✓
`k(S`k)

�✓⇤
`k(S`k)

k
2

 R () k˜✓
`k(S`k)

�✓⇤
`k(S`k)

k
2

 R/2,
(S.17)

it suffices to obtain a suitable upper bound for E[L
`k

(

˜#
`k(S`k)

)� L
`k

(✓⇤
`k(S`k)

)], in order to get the
result in the statement of the lemma. To this end, we introduce one more piece of shorthand, and
denote the objective for the restricted problem (S.8) as J

`k

(#).

We proceed with the following chain of (in)equalities:

E

h
L
`k

(

˜#
`k(S`k)

)� L
`k

(✓⇤
`k(S`k)

)

i

= E

h
L
`k

(

˜#
`k(S`k)

)� L
`k

(✓⇤
`k(S`k)

)

i
+ J

`k

(

˜#
`k(S`k)

)� J
`k

(

˜#
`k(S`k)

) +

J
`k

(✓⇤
`k(S`k)

)� J
`k

(✓⇤
`k(S`k)

)

(S.18)
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= L
`k

(✓⇤
`k(S`k)

)�EL
`k

(✓⇤
`k(S`k)

)� L
`k

(

˜#
`k(S`k)

) +EL
`k

(

˜#
`k(S`k)

)

| {z }
�(✓

⇤
`k(S`k)

,

˜

#`k(S`k))

+

J
`k

(

˜#
`k(S`k)

)� J
`k

(✓⇤
`k(S`k)

) + �
1

X

j2S`k

k✓⇤
`kj

k
2

� �
1

X

j2S`k

k˜#
`kj

k
2

� (�
2

/2)k˜#
`k(S`k)

k2
2

+ (�
2

/2)k✓⇤
`k(S`k)

k2
2

(S.19)

 �(✓⇤
`k(S`k)

, ˜#
`k(S`k)

) + J
`k

(

˜#
`k(S`k)

)� J
`k

(✓⇤
`k(S`k)

) + �
1

X

j2S`k

k✓⇤
`kj

� ˜#
`kj

k
2

+ o(1)

(S.20)

 �(✓⇤
`k(S`k)

, ˜#
`k(S`k)

) + J
`k

(

˜#
`k(S`k)

)� J
`k

(✓⇤
`k(S`k)

) + �
1

sR
p
m+ o(1) (S.21)

 �(✓⇤
`k(S`k)

, ˜#
`k(S`k)

) + 2�
1

sR
p
m (S.22)

 sup

˜

#`k(S`k)2B

|�(✓⇤
`k(S`k)

, ˜#
`k(S`k)

)|+ 2�
1

sR
p
m. (S.23)

Here, (S.18) follows by adding and subtracting like terms, and (S.19) by rearranging (S.18). In (S.20)
we use the triangle inequality and the following argument to show that the terms involving �

2

are o(1).
Under the assumption that �

2

= o(n41/42/✓⇤
max

), combined with the restriction that s = o(n1/21

),
we have �

2

= o(n/(
p
s✓⇤

max

)). Therefore, under our choice of R = 1/n (as specified below), we
have

�
2

p
s✓⇤

max

R ! 0.

This in turn is used to argue that

�(�
2

/2)k˜#
`k(S`k)

k2
2

+ (�
2

/2)k✓⇤
`k(S`k)

k2
2

= (�
2

/2)k˜#
`k(S`k)

� ✓⇤
`k(S`k)

k2
2

� �
2

k˜#
`k(S`k)

k2
2

+ �
2

˜#T

`k(S`k)
✓⇤
`k(S`k)

 (�
2

/2)R2 � �
2

k˜#
`k(S`k)

k
2

(k˜#
`k(S`k)

k
2

� k✓⇤
`k(S`k)

k
2

)

 (�
2

/2)R2

+ �
2

k˜#
`k(S`k)

k
2

R

 (�
2

/2)R2

+ �
2

k✓⇤
`k(S`k)

k
2

R

 (�
2

/2)R2

+ �
2

p
s✓⇤

max

R ! 0.

In the second to last line, we have applied k˜#
`k(S`k)

k
2

 k✓⇤
`k(S`k)

k
2

, as, outside of this case, the
term in question �(�

2

/2)k˜#
`k(S`k)

k2
2

+ (�
2

/2)k✓⇤
`k(S`k)

k2
2

would be negative, anyway.

Continuing on, (S.21) holds because k✓⇤
`k(S`k)

� ˜#
`k(S`k)

k
2

 R implies k✓⇤
`kj

� ˜#
`kj

k
2

 R. Fi-
nally, (S.22) follows because of the following argument. Since J

`k

is convex, we can use the definition
of ˜#

`k(S`k)
and get

J
`k

(

˜#
`k(S`k)

)  �J
`k

(

˜✓
`k(S`k)

)+(1��)J
`k

(✓⇤
`k(S`k)

) = J
`k

(✓⇤
`k(S`k)

)+�(J
`k

(

˜✓⇤
`k(S`k)

)�J
`k

(✓⇤
`k(S`k)

));

notice that the last term here is nonpositive, since ˜✓
`k(S`k)

is the solution to the restricted problem
(S.8), and thus we have that

J
`k

(

˜#
`k(S`k)

)  J
`k

(✓⇤
`k(S`k)

),

which lets us move from (S.21) to (S.22).

Lemma 1 in [3] states, with probability at least 1 � �, where � = exp(�C
6

s log n) and C
6

> 0 is
some constant, that

sup

˜

#`k(S`k)2B

|�(✓⇤
`k(S`k)

, ˜#
`k(S`k)

)|  6R
p

sn log n,

so from (S.23), with probability at least 1� �, we see that

E

h
L
`k

(

˜#
`k(S`k)

)� L
`k

(✓⇤
`k(S`k)

)

i
 6R

p
sn log n+ 2�

1

sR
p
m
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and, using (S.16), that

nk˜#
`k(S`k)

� ✓⇤
`k(S`k)

k2
2

 C 0
⇣
R
p

sn log n+ �
1

sR
p
m
⌘
,

for some constant C 0 > 0.

Plugging in R = 1/n, dividing through by n, and using the fact that the square root function is
subadditive, we get, with probability at least 1� �, that

k˜#
`k(S`k)

� ✓⇤
`k(S`k)

k
2

 C 0
✓
(s log n)1/4

n3/4

+

(�
1

s)1/2m1/4

n

◆

 C 0

 r
s log n

n
+

�
1

s
p
m

n

!
.

Finally, we complete the proof by applying (S.17), in order to get that

k˜✓
`k(S`k)

� ✓⇤
`k(S`k)

k
2

 �,

where we have defined

� = C

 
�
1

s
p
m

n
+

r
s log n

n

!
,

and C > 0 is some constant, with probability at least 1� �/(2dr), for large enough n.

S.6 Proof of Lemma 5.1

The prox operator prox
� A(A) is separable in the entries of its minimizer X , so we can focus on

minimizing over X
ij

the expression

max{↵
j

X
ij

, (↵
j

� 1)X
ij

}+ (1/(2�)) (X
ij

�A
ij

)

2

= ↵
j

max{0, X
ij

}+ (1� ↵
j

)max{0,�X
ij

}+ (1/(2�)) (X
ij

�A
ij

)

2

. (S.24)

Suppose X
ij

> 0. Then differentiating (S.24) gives X
ij

= A
ij

� �↵
j

and the sufficient condition
A

ij

> �↵
j

. Similarly, assuming X
ij

< 0 gives X
ij

= A
ij

+ �(1 � ↵
j

) when A
ij

< �(↵
j

� 1).
Otherwise, we can take X

ij

= 0. Putting these cases together gives the result.

S.7 ADMM for the MQGM

A complete description of our ADMM-based algorithm for fitting the MQGM to data is given in
Algorithm 1.

S.8 Additional details on Gibbs sampling

In the MQGM, there is no analytic solution for parameters like the mean, median, or quantiles of
these marginal and conditional distributions, but the pseudolikelihood approximation makes for a
very efficient Gibbs sampling procedure, which we highlight in this section. As it is relevant to
the computational aspects of the approach, in this subsection we will make explicit the conditional
random field, where y

k

depends on both y¬k

and fixed input features x.

First, note that since we are representing the distribution of y
k

|y¬k

, x via its inverse CDF, to sample
from from this conditional distribution we can simply generate a random ↵ ⇠ Uniform(0, 1). We
then compute

ˆQ
yk|y¬k

(↵
`

) = �(y)T ✓
`k

+ xT ✓x
`k

ˆQ
yk|y¬k

(↵
`+1

) = �(y)T ✓
(`+1)k

+ xT ✓x
(`+1)k

for some pair ↵
`

 ↵  ↵
`+1

and set y
k

to be a linear interpolation of the two values,
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Algorithm 1 ADMM for the MQGM

Input: observations y(1), . . . , y(n) 2 Rd, feature matrix � 2 Rn⇥dm, quantile levels A, constants
�
1

,�
2

> 0

Output: fitted coefficients ˆ

⇥ = (

ˆ✓
`kj

,ˆb
`k

)

for k = 1, . . . , d (in parallel, if possible) do
initialize ⇥

k

, B
k

, V,W,Z, U
V

, U
W

, U
Z

repeat
update ⇥

k

using (13)
update B

k

using (13)
update V using (10)
update W using (11)
update Z using (12) and Lemma 5.1
update U

V

, U
W

, U
Z

:

U
V

 U
V

+ (1BT

k

+ �

k

⇥� V )

U
W

 U
W

+ (⇥

k

�W )

U
Z

 U
Z

+ (Y
k

1

T � 1BT

k

� �

k

⇥� Z)

until converged
end for

y
k

 ˆQ
yk|y¬k

(↵
`

) +

⇣
ˆQ
yk|y¬k

(↵
`+1

)� ˆQ
yk|y¬k

(↵
`

)

⌘
(↵� ↵

`

)

↵
`+1

� ↵
`

.

This highlights the desirability of having a range of nonuniformly spaced ↵ terms that reach values
close to zero and one as otherwise we may not be able to find a pair of ↵’s that lower and upper bound
our random sample ↵. However, in the case that we model a sufficient quantity of ↵, a reasonable
approximation (albeit one that will not sample from the extreme tails) is also simply to pick a random
↵
`

2 A and use just the corresponding column ✓
`k

to generate the random sample.

Computationally, there are a few simple but key points involved in making the sampling efficient.
First, when sampling from a conditional distribution, we can precompute xT

⇥

x

k

for each k, and use
these terms as a constant offset. Second, we maintain a “running” feature vector �(y) 2 Rdm, i.e.,
the concatenation of features corresponding to each coordinate �(y

k

). Each time we sample a new
coordinate y

k

, we generate just the new features in the �(y
k

) block, leaving the remaining features
untouched. Finally, since the ⇥

k

terms are sparse, the inner product �(y)T ✓
`k

will only contain a
few nonzeros terms in the sum, and will be computed more efficiently if the ⇥

k

are stored as a sparse
matrices.

S.9 Additional numerical results for the ring data

S.9.1 Conditional independencies recovered by the nonparanormal skeptic, TIGER, and
Laplace

We present the conditional independencies recovered by the nonparanormal skeptic, TIGER, and
Laplace on the ring data in Figure S.1; results for the remaining methods are presented in Section 6.1.

S.9.2 Evaluation of fitted conditional CDFs

Here, we elaborate on the evaluation of the conditional CDFs given by the MQGM, MB, GLasso,
SpaceJam, TIGER, and Laplace, when run on the ring data. (We omit the nonparanormal skeptic from
our evaluation as it is not clear how to sample from its conditionals, due to the nature of a particular
transformation that it uses.)

For each of these methods, we essentially averaged the total variation distances and Kolmogorov-
Smirnoff statistics between the fitted and true conditional CDFs across all variables, and then reported

11
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Figure S.1: Conditional independencies recovered by the nonparanormal skeptic, TIGER, and Laplace on the
ring data; black means conditional dependence.

Table S.1: Total variation (TV) distance and Kolmogorov-Smirnoff (KS) statistic values for the MQGM, MB,
GLasso, SpaceJam, TIGER, and Laplace on the ring data; lower is better, best in bold.

TV KS
MQGM 20.873 0.760
MB 92.298 1.856
GLasso 92.479 1.768
SpaceJam 91.568 1.697
TIGER 88.284 1.450
Laplace 127.406 1.768

the best values obtained across a range of tuning parameters (more details below). We present the
results in Table S.1; we see that the MQGM outperforms all its competitors, in both metrics.

We now describe the evaluation in more detail; for simplicity, we describe everything that follows in
terms of the conditional CDF y

1

|y
2

only, with everything being extended in the obvious way to other
conditionals.

First, we carried out the following steps in order to compute the true (empirical) conditional CDF.

1. We drew n = 400 samples from the ring distribution, by following the procedure described
in Section 6.1; these observations are plotted across the top row of Figure S.2.

2. We then partitioned the y
2

samples into five equally-sized bins, and computed the true
empirical conditional CDF of y

1

given each bin of y
2

values.

Next, we carried out the following steps in order to compute the estimated (empirical) conditional
CDFs, for each method.

3. We fitted each method to the samples obtained in step (1) above.
4. Then, for each method, we drew a sample of y

1

given each y
2

sample, using the method’s
conditional distribution; these conditionals are plotted across the second through fifth rows
of Figure S.2 (for representative values of �

1

).
Operationally, we drew samples from each method’s conditionals in the following ways.
• MQGM: we used the Gibbs sampler described in Section S.8.
• MB: we drew y

1

⇠ N (

ˆ✓T
1

y
(i)

2

, �̂2

1|2), where ˆ✓
1

is the fitted lasso regression coefficient

of y
1

on y
2

; y(i)
2

for i = 1, . . . , n is the ith observation of y
2

obtained in step (1) above;
and �̂2

1|2 = var(Y
1

� Y
2

ˆ✓
1

) denotes the sample variance of the underlying error term

Y
1

� Y
2

ˆ✓
1

with Y
i

= (y
(1)

i

, . . . , y
(n)

i

) 2 Rn collecting all observations along variable
i.
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• SpaceJam: we drew y
1

⇠ N (

ˆ✓T
1

�(y
(i)

2

), �̂2

1|2), where � is a suitable basis function,
and ˆ✓

1

as well as �̂2

1|2 are defined in ways analogous to the neighborhood selection
setup.

• GLasso: we drew y
1

⇠ N (µ̂
1|2, �̂

2

1|2), where

µ̂
1|2 = µ̂

1

+

ˆ

⌃

12

ˆ

⌃

�1

22

(y
(i)

2

� µ̂
2

)

�̂2

1|2 =

ˆ

⌃

11

� ˆ

⌃

12

ˆ

⌃

�1

22

ˆ

⌃

21

with µ̂
i

denoting the sample mean of Y
i

, and ˆ

⌃ denoting the estimate of the covariance
matrix given by GLasso (subscripts select blocks of this matrix).

5. Finally, we partitioned the y
2

samples into five equally-sized bins (just as when computing
the true conditional CDF), and computed the estimated empirical conditional CDF of y

1

given each bin of y
2

values.

Having computed the true as well as estimated conditional CDFs, we measured the goodness of fit of
each method’s conditional CDFs to the true conditional CDFs, by computing the total variation (TV)
distance, i.e.,

(1/2)

qX

i=1

��� ˆFmethodj
y1|y2

(z(i)|⇣)� ˆF true
y1|y2

(z(i)|⇣)
��� ,

as well as the (scaled) Kolmogorov-Smirnoff (KS) statistic, i.e.,

max

i=1,...,q

��� ˆFmethodj
y1|y2

(z(i)|⇣)� ˆF true
y1|y2

(z(i)|⇣)
��� .

Here, ˆF true
y1|y2

(z(i)|⇣) is the true empirical conditional CDF of y
1

|y
2

, evaluated at y
1

= z(i) and
given y

2

= ⇣, and ˆF
methodj
y1|y2

(z(i)|⇣) is a particular method’s (“method
j

” above) estimated empirical
conditional CDF, evaluated at y

1

= z(i) and given y
2

= ⇣. For each method, we averaged these TV
and KS values across the method’s conditional CDFs. Table S.1 reports the best (across a range of
tuning parameters) of these averaged TV and KS values.

S.10 Additional numerical results for modeling flu epidemics

Here, we plot samples from the marginal distributions of the percentages of flu reports at regions
one, five, and ten throughout the year, which reveals the heteroskedastic nature of the data (just as in
Section 6.2, for region six).

S.11 Sustainable energy application

We evaluate the ability of MQGM to recover the conditional independencies between several wind
farms on the basis of large-scale, hourly wind power measurements; wind power is intermittent, and
thus understanding the relationships between wind farms can help farm operators plan. We obtained
hourly wind power measurements from July 1, 2009 through September 14, 2010 at seven wind farms
(n = 877, see [6, 8, 1] for details). The primary variables here encode the hourly wind power at a
farm over two days (i.e., 48 hours), thus d = 7⇥48 = 336. Exogenous variables were used to encode
forecasted wind power and direction as well as other historical measurements, for a total of q = 3417.
We set m = 5 and r = 20. Fitting the MQGM here hence requires solving 48⇥ 7 = 336 multiple
quantile regression subproblems each of dimension ((336� 1)⇥ 5 + 3417)⇥ 20 = 101, 840. Each
subproblem took roughly 87 minutes, comparable to the algorithm of [8].

Figure S.4 presents the recovered conditional independencies; the nonzero super- and sub-diagonal
entries suggest that at any wind farm, the previous hour’s wind power (naturally) influences the
next hour’s, while the nonzero off-diagonal entries, e.g., in the (4,6) block, uncover farms that may
influence one another. [8], whose method placed fifth in a Kaggle competition, as well as [1] report
similar findings (see the left panels of Figures 7 and 3 in these papers, respectively).
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Figure S.2: Conditional distributions for MQGM, MB, GLasso, and SpaceJam, fitted to samples from the ring
distribution (TIGER and Laplace’s conditionals both look similar to MB’s). First row: samples from the ring
distribution, where each plot highlights the samples falling into a particular shaded bin on the y2 axis. Second
through fifth rows: conditional distributions of y1 given y2 for each method, where each plot conditions on the
appropriate y2 bin as highlighted in the first row. The MQGM’s conditional distributions are intuitive, appearing
bimodal for bin 3, and more peaked for bins 1 and 5. MB, GLasso, and SpaceJam’s densities appear (roughly)
Gaussian, as expected.
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Figure S.3: Samples from the fitted marginal distributions of the weekly flu incidence rates at several regions of
the U.S.; samples at larger quantile levels shaded lighter, median in darker blue.
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Figure S.4: Conditional independencies recovered by the MQGM on the wind farms data; each block corre-
sponds to a wind farm, and black indicates dependence.
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