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Abstract

‘We propose a new framework for single-channel source
separation that lies between the fully supervised and un-
supervised setting. Instead of supervision, we provide
input features for each source signal and use convex
methods to estimate the correlations between these fea-
tures and the unobserved signal decomposition. Contex-
tually supervised source separation is a natural fit for
domains with large amounts of data but no explicit su-
pervision; our motivating application is energy disag-
gregation of hourly smart meter data (the separation of
whole-home power signals into different energy uses).
Here contextual supervision allows us to provide item-
ized energy usage for thousands homes, a task previ-
ously impossible due to the need for specialized data
collection hardware. On smaller datasets which include
labels, we demonstrate that contextual supervision im-
proves significantly over a reasonable baseline and ex-
isting unsupervised methods for source separation. Fi-
nally, we analyze the case of /2 loss theoretically and
show that recovery of the signal components depends
only on cross-correlation between features for differ-
ent signals, not on correlations between features for the
same signal.

Introduction

We consider the single-channel source separation problem,
in which we wish to separate a single aggregate signal into
a mixture of unobserved component signals. Traditionally,
this problem has been approached in two ways: the super-
vised setting (Kolter, Batra, and Ng 2010; Roweis 2001;
Schmidt and Olsson 2006),where we have access to training
data with the true signal separations and the unsupervised
(or “blind”) setting (Blumensath and Davies 2005; Davies
and James 2007; Lewicki and Sejnowski 2000; Schmidt and
Mgrup 2006), where we have only the aggregate signal.
However, both settings have potential drawbacks: for many
problems, including energy disaggregation—which looks to
separate individual energy uses from a whole-home power
signal (Hart 1992)—it can be difficult to obtain training data
with the true separated signals needed for the supervised set-
ting; in contrast, the unsupervised setting is an ill-defined
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problem with arbitrarily many solutions, and thus algorithms
are highly task-dependent.

In this work, we propose an alternative approach that lies
between these two extremes: with contextual supervision,
along with the input signal to be separated, we provide con-
textual features correlated with the unobserved component
signals. In practice, we find that this is often much easier
than providing a fully supervised training set, yet it also al-
lows for a well-defined problem, unlike the unsupervised
setting. The approach is a natural fit for energy disaggrega-
tion, since we have strong correlations between energy us-
age and easily observed context—air conditioning spikes in
hot summer months, lighting increases when there is a lack
of sunlight, etc. We formulate our model directly as an opti-
mization problem in which we jointly estimate these corre-
lations along with the most likely source separation. Theo-
retically, we show that when the contextual features are rela-
tively uncorrelated between different groups, we can recover
the correct separation with high probability.

Contextually supervised source separation provides a
compelling framework for energy disaggregation from
“smart meters”, communication-enabled power meters that
are currently installed in more than 32 million homes (Insti-
tute for Electric Efficiency 2012), but are limited to record-
ing whole home energy usage at low frequencies (every 15
minutes or hour). This is an important task since many stud-
ies have shown that consumers naturally adopt energy con-
serving behaviors when presented with a breakdown of their
energy usage (Darby 2006; Neenan and Robinson 2009;
Ehrhardt-Martinez, Donnelly, and Laitner 2010). There are
several possible ways that such a breakdown could be
achieved; for example, by installing current sensors on each
device we could monitor electricity use directly. But, as cus-
tom hardware installation is relatively expensive (and re-
quires initiative from homeowners), algorithmic approaches
that allow disaggregation of energy data already being col-
lected are appealing. However, existing energy disaggrega-
tion approaches virtually all use high-frequency sampling
(e.g. per second or faster) which still requires the installation
of custom monitoring hardware for data collection. In con-
trast, by enabling disaggregation of readily available low-
resolution smart meter data, we can immediately realize the
benefits of observing itemized energy use without the need
for additional monitoring hardware.



The main contributions of this paper are 1) the proposed
contextually supervised setting and the optimization formu-
lation; 2) the application of this approach to the problem
of energy disaggregation from low-resolution smart meter
data without explicit supervision; and 3) theoretical analysis
showing that accurate separation only requires linear inde-
pendence between features for different signals.

Related work

As mentioned above, work in single-channel source separa-
tion has been separated along the lines of supervised and
unsupervised algorithms. A common strategy is to sepa-
rate the observed aggregate signal into a linear combination
of several bases, where different bases correspond to dif-
ferent components of the signal; algorithms such as Prob-
abilistic Latent Component Analysis (PLCA) (Smaragdis,
Raj, and Shashanka 2006), sparse coding (Olshausen and
Field 1997), and factorial hidden Markov models (FHMMs)
(Ghahramani and Jordan 1997) all fall within this category,
with the differences concerning 1) how bases are represented
and assigned to different signal components and 2) how the
algorithm infers the activation of the different bases given
the aggregate signal. For example, PLCA typically uses
pre-defined basis functions (commonly Fourier or Wavelet
bases), with a probabilistic model for how sources gener-
ate different bases; sparse coding learns bases tuned to data
while encouraging sparse activations; and FHMMs use hid-
den Markov models to represent each source. In the super-
vised setting, one typically uses the individual signals to
learn parameters for each set of bases (e.g., PLCA will learn
which bases are typical for each signal), whereas unsuper-
vised methods learn through an EM-like procedure or by
maximizing some separation criteria for the learned bases.
The method we propose here is conceptually similar, but
the nature of these bases is rather different: instead of fixed
bases with changing activations, we require features that ef-
fectively generate time-varying bases and learn activations
that are constant over time.

Orthogonal to this research, there has also been a great
deal of work in multi-channel blind source separation prob-
lems, where we observe multiple mixings of the same
sources (typically, as many mixings as there are signals)
rather than in isolation. These methods can exploit signifi-
cantly more structure and algorithms like Independent Com-
ponent Analysis (Comon 1994; Bell and Sejnowski 1995)
can separate signals with virtually no supervised informa-
tion. However, when applied to the single-channel problem
(when this is even possible), they typically perform sub-
stantially worse than methods which exploit structure in the
problem, such as those described above.

From the applied point of view, algorithms for energy dis-
aggregation have received growing interest in recent years
(Kolter, Batra, and Ng 2010; Kim et al. 2011; Ziefman and
Roth 2011; Kolter and Jaakkola 2012; Parson et al. 2012)
but these approaches all use either high-frequency sampling
of the whole-building power signal or known (supervised)
breakdowns whereas the focus of this work is disaggregat-
ing low-resolution smart data without the aid of explicit su-
pervision, as discussed in the previous section.

Contextually supervised source separation

We begin by formulating the optimization problem for con-
textual source separation. Formally, we assume there is some
unknown matrix of k£ component signals
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from which we observe the sum §j = Z’;Zl y;. For example,
in our disaggregation setting, y; € R” could denote a power
trace (with 7T total readings) for a single type of appliance,
such as the air conditioning, lighting, or electronics, and ¥
denotes the sum of all these power signals, which we observe
from a home’s power meter.

In our proposed model, we represent each individual com-
ponent signal y; as a linear function of some component-
specific bases X; € RT >

yi =~ X;0; 2

where 6; € R™ are the signal’s coefficients. The formal
objective of our algorithm is: given the aggregate signal §
and the component features X;, ¢ = 1,.. ., k, estimate both
the parameters 6; and the unknown source components ;.
We cast this as an optimization problem

k
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where ¢; : RT x RT — R is a loss function penalizing
differences between the ith reconstructed signal and its lin-
ear representation; g; is a regularization term encoding the
“likely” form of the signal y;, independent of the features;
and h; is a regularization penalty on ;. Choosing ¢;, g; and
h; to be convex functions results in a convex optimization
problem.

A natural choice of loss function ¢; is a norm penalizing
the difference between the reconstructed signal and its fea-
tures ||y; — X;0;|, but since our formulation enables loss
functions that depend simultaneously on all 7" values of the
signal, we allow for more complex choices as well. For
example in the energy disaggregation problem, air condi-
tioning is correlated with high temperature but does not re-
spond to outside temperature changes instantaneously; ther-
mal mass and the varying occupancy in buildings often re-
sults in air conditioning usage that correlates with high tem-
perature over some window (for instance, if no one is in a
room during a period of high temperature, we may not use
electricity then, but need to “make up” for this later when
someone does enter the room). In this case, the loss function

(i, Xi0) = ||(ys — Xi0;)(I @ 17)]|3 “4)

which penalizes the aggregate difference of y; and X;6; over
a sliding window, can be used to capture such dynamics. In
many settings, it may also make sense to use £; or £, rather
than /2 loss, depending on the nature of the source signal.



Likewise, since the objective term g; depends on all T’
values of y;, we can use it to encode the likely dynamics of
the source signal independent of X;0;. For air conditioning
and other single appliance types, we expect sharp transitions
between on/off states which we can encode by penalizing
the /1 norm of Dy; where D is the linear difference oper-
ator subtracting (y;)t—1 — (y;)¢. For other types of energy
consumption, for example groups of many electronic appli-
ances, we expect the signal to have smoother dynamics and
thus ¢ loss is more appropriate. Finally, we also include
h; for statistical regularization purposes—but for problems
where T' > n,;, such as the ones we consider in energy dis-
aggregation, the choice of h; is less important.

Theoretical analysis

Next, we consider the ability of our model to recover the
true source signals as T" grows while k& and n; remain fixed.
For the purposes of this section only, we restrict our atten-
tion to the choice of /5 loss, no g; or h; terms, and Gaussian
noise (the extension to the sub-Gaussian case is straightfor-
ward). We show that under this specialization of the model,
the optimization problem recovers the underlying signals at
a rate dependent on the linear independence between blocks
of input features X;. In practice, the choice of ¢;, g; and h;
is problem-specific and as we see in our experiments, this
choice has a significant impact on performance. As we show
in this section, for the special case of /5 loss with no regu-
larization, the estimate of the 6; reduces to the least-squares
estimate which simplifies theoretical analysis significantly.
However, while this provides intuition on the essential be-
havior of the model in the large 7" regime, we note that this
is a special case of the framework and that in general more
sophisticated loss functions will result in more complex al-
gorithms with better performance.

Formally, for this section we assume the source signals
have Gaussian noise

Y = X607 +w; (5)

for some 67 € R™ and w; ~ N(0,0ZI). Under the choice
of {5 loss, our optimization problem becomes

k
1
minimize Zl 5y 12
o (6)

k

subject to Zyl =9
i=1

and by taking gradients we have the optimality conditions
yi— Xi0; +A=0 for i=1...k

7
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where A € RT is the vector of Lagrange multipliers cor-
responding to the constraints. These constraints imply that
XT'\ = 0 and summing over k we have

J—XO0+k\=0

XTx=0 ®

where 0 € R™ is a concatenation of all the 6,’s, X € RTx"
is a concatenation of all the X;’s and n = Zle n; is the
total number of features. This system of equations has the
solution .

= (XTXx)"1xTy 9)
which is simply the least-squares solution found by regress-
ing y on all of the features X.

Since each y; has it’s own noise term, we can never ex-
pect to recover y; exactly, but we can recover the true 6*
with analysis that is the same as for standard linear regres-
sion. However, in the context of source separation, we are
interested in the recovery of the “noiseless” y;, X;07, as this
corresponds to the recovery of the underlying signals. This
can be a significant advantage as it is often much easier to re-
cover the product of X;07 than the individual §; parameters
themselves. In particular, as we show in our analysis, accu-
rate signal recovery depends only on the degree to which
features in different groups are correlated, not on the corre-
lations contained within a particular group. Concretely, our
analysis considers how the root mean squared error

R R 2

vanishes for large 7.

Theorem 1. Given data generated by the model (5), and
estimating 0 via (9), we have that

E ||| X:6; - Xi9*||§} = o? tr XT X,(XTX);! < o®nips
an

where 0% = Zle o? and p; = Apax( X Xi(XTX);1).

Furthermore, for 5 < 0.1, with probability greater than 1—9
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A key quantity in this theorem 1is the matrix
XI'Xy(XTX);8 € Rrxm; (XTX);' denotes the
i,4 block of the full inverse (X7 X)~! (i.e., first inverting
the joint covariance matrix of all the features, and then
taking the ¢, ¢ block), and this term provides a measure of
the linear independence between features corresponding
to different signals. To see this, note that if features across
different signals are orthogonal, X7 X is block diagonal,
and thus X/ X;(XTX);' = XIX;(XFX;))™ = I, s0
pi; = 1. Alternatively, if two features provided for different
signals are highly correlated, entries of (X7 X);;* will have
large magnitude that is not canceled by X! X; and p; will
be large. This formalizes an intuitive notion for contextually
supervised source separation: for recovering the underlying
signals, it does not matter if two features for the same signal
are highly correlated (this contrasts to the case of recovering
0* itself which depends on all correlations), but two corre-
lated signals for different features make estimation difficult;
intuitively, if two very similar features are provided for two
different source signals, attribution becomes difficult. A
particularly useful property of these bounds is that all terms
can be computed using just X;, so we can estimate recovery
rates when choosing our design matrix.

RMSE(X,0;) < \/ (12)



The proof of Theorem 1 proceeds in two steps. First, us-
ing rules for linear transformations of Gaussian random vari-

ables, we show that the quantity X;(6; — 6}) is also (zero-
mean) Gaussian, which immediately leads to (11). Second,

we derive a tail bound on the probability that X; (0; —67) ex-
ceeds some threshold, which leads to the sample complexity
bound (12); because this quantity has a singular covariance
matrix, this requires a slightly specialized probability bound,
given by the following lemma

Lemma 1. Suppose x € R? ~ N(0, X) with rank(X) = n.
Then

P (lle]3 > 1) < (;A)/ exp{;a/xn)} (13)

where X is the largest eigenvalue of 3.

The proof, along with the complete proof of Theorem 1,
is deferred to Appendix A.

Experimental results

In this section we evaluate contextual supervision for en-
ergy disaggregation on one synthetic dataset and two real
datasets. On synthetic data we demonstrate that contextual
supervision significantly outperforms existing methods (e.g.
nonnegative sparse coding) and that by tailoring the loss
functions to the expected form of the component signals
(as is a feature of our optimization framework), we can
significantly increase performance. On real data, we be-
gin with a dataset from Pecan Street, Inc. (http://www.
pecanstreet.org/) that is relatively small (less than
100 homes), but comes with labeled data allowing us to
validate our unsupervised algorithm quantitatively. Here we
show that our unsupervised model does remarkably well in
disaggregating sources of energy consumption and improves
significantly over a reasonable baseline. Finally, we apply
the same methodology to disaggregate large-scale smart me-
ter data from Pacific Gas and Electric (PG&E) consisting of
over 4000 homes and compare the results of our contextually
supervised model to aggregate statistics from survey data.

In all experiments, we tune the model using hyperparam-
eters that weigh the terms in the optimization objective; in
the case of energy disaggregation, the model including hy-
perparameters « and [ is shown in Table 3. We set these
hyperparameters using a priori knowledge about the relative
frequency of each signal over the entire dataset. For energy
disaggregation, it is reasonable to assume that this knowl-
edge is available either from survey data (e.g. (U.S. Energy
Information Administration 2009)), or from a small number
of homes with more fine-grained monitoring, as is the case
for the Pecan Street dataset. In both cases, we use the same
hyperparameters for all homes in the dataset.

Disaggregation of synthetic data. The first set of exper-
iments considers a synthetic generation process that mimics
signals that we encounter in energy disaggregation. The pro-
cess described visually in Figure 1 (top) begins with two sig-
nals, the first is smoothly varying over time while the other
is a repeating step function

X1(t) =sin(2nt/m1) + 1, Xo(t) = I(t mod 75 < 72/2)
(14)
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Figure 1: Synthetic data generation process starting with two
underlying signals (top left), corrupted by different noise
models (top right), summed to give the observed input (row
2) and disaggregated (rows 3 and 4).

where I(-) is the indicator function and 71, 75 are the period
of each signal. We also use two different noise models: for
the smooth signal we sample Gaussian noise from N(0, o2)
while for the step function, we sample a distribution with a
point mass at zero, uniform probability over [—1,0) U (0, 1]
and correlate it across time by summing over a window of
size (3. Finally, we constrain both noisy signals to be non-
negative and sum them to generate our input.

We generate data under this model for 7' = 50000 time
points and consider increasingly specialized optimization
objectives while measuring the error in recovering Y* =
X D(6*) + W, the underlying source signals corrupted by

Model MAE
Mean prediction 0.3776
Nonnegative sparse coding 0.2843
£ loss for y; 0.1205
{5 loss for yq, £1 loss for g 0.0994
45 loss for yq, £1 loss for ys, penalty on || Dy;|| | 0.0758

Table 1: Performance on disaggregation of synthetic data.
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Figure 2: Energy disaggregation results over one week and
a single home from the Pecan Street dataset.

noise. As can be seen in Table 1, by using ¢; loss for ¢, and
adding g;(y;) terms penalizing || Dy |2 and || Dys]|1, error
decreases by 37% over just {5 loss alone; in Figure 1, we
observe that our estimation recovers the true source signals
closely with the g; terms helping to capture the dynamics of
the noise model for wo.

As a baseline for this result, we compare to the mean pre-
diction heuristic (predicting at each time point a breakdown
proportional to the overall probability of each signal) and to
a state-of-the-art unsupervised method, nonnegative sparse
coding (Hoyer 2002). We apply sparse coding by segment-
ing the input signal into 1000 examples of 50 time points
(1/4 the period of the sine wave, X;(t)) and fit a sparse
model of 200 basis functions. We report the best possible
source separation by assigning each basis function accord-
ing to an oracle measuring correlation with the true source
signal and using the best value over a grid of hyperparame-
ters. As can be seen in Table 1, the mean prediction heuristic
is nearly 5 times worse and sparse coding is nearly 4 times
worse than our best contextually supervised model.

Energy disaggregation with ground truth. Next we
consider the ability of contextual supervision to recover the
sources of energy consumption on a real dataset from Pecan
Street consisting of 84 homes each with at least 1 year worth
of energy usage data. As contextual information we con-
struct a temperature time series using data from Weather Un-
derground (http://www.wunderground.com/) mea-
suring the temperature at the nearby airport in Austin, Texas.

Category | Mean | NNSC | Contextual
Base 0.2534 | 0.2793 0.1849
A/C 0.2849 | 0.2894 0.1919
Appliance | 0.2262 | 0.2416 0.1900
Average 0.2548 | 0.2701 0.1889

Table 2: Comparison of performance on Pecan Street
dataset, measured in mean absolute error (MAE).

| [ | Base | | ac | | Appliance |

Energy (kWh)

Figure 3: Energy disaggregation results over entire time pe-
riod for a single home from the Pecan Street dataset with
estimated (left) and actual (right).

The Pecan Street dataset includes fine-grained energy usage
information at the minute level for the entire home with an
energy breakdown labeled according to each electrical cir-
cuit in the home. We group the circuits into categories repre-
senting air conditioning, large appliances and base load and
aggregate the data on an hourly basis to mimic the scenario
presented by smart meter data.

The specification of our energy disaggregation model is
given in Table 3—we capture the non-linear dependence on
temperature with radial-basis functions (RBFs), include a
“Base” category which models energy used as a function
of time of day, and featureless “Appliance” category rep-
resenting large spikes of energy which do not correspond
to any available context. For simplicity, we penalize each
category’s deviations from the model using ¢; loss; but for
heating and cooling we first multiply by a smoothing matrix
S, (I’s on the diagonal and n super diagonals) capturing
the thermal mass inherent in heating and cooling: we expect
energy usage to correlate with temperature over a window
of time, not immediately. We use ¢;(y;) and the difference
operator to encode our intuition of how energy consump-
tion in each category evolves over time. The “Base” category
represents an aggregation of many sources which we expect
to evolve smoothly over time, while the on/off behavior in
other categories is best represented by the ¢; penalty. Fi-
nally we note that in the Pecan Street data, there is no labeled
circuit corresponding exclusively to electric heating (‘“Heat-
ing”), and thus we exclude this category for this dataset.

In Table 2, we compare the results of contextual supervi-
sion with the mean prediction heuristic and see that contex-
tual supervision improves by 26% over this baseline which
is already better than nonnegative sparse coding. Qualita-
tively we consider the disaggregated energy results for a sin-



Category | Features l; gi

Base Hour of day aiflyr — X101 b1l D13
Heating RBFs over temperatures < 50°F | aal|S2(ys — X303) |1 | B2/l Dysla
A/IC RBFs over temperatures > 70°F | as]|S2(y2 — X202)]l1 | B3| Dyz|l1
Appliance | None allpall Bul Dyl

Table 3: Model specification for contextually supervised energy disaggregation.
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Figure 4: Disaggregated energy usage for a single home
near Fresno, California over a summer week (top left) and a
winter week (top right); aggregated over 4000+ homes over
nearly four years (bottom)

gle home over one week in Figure 2 and see that contextual
supervision correctly assigns energy usage to categories—a
large amount of energy is assigned to A/C which cycles on
and off roughly corresponding to external temperature, large
spikes from appliances happen at seemingly random times
and the smoothly varying base load is captured correctly. In
Figure 3, we consider the disaggregation results for the same
home across the entire time period and see that the contex-
tually supervised estimates correspond very closely to the
actual sources of energy consumption.

Large-scale energy disaggregation. Next, we turn to the
motivating problem for our model: disaggregating large-
scale low-resolution smart meter data into its component
sources of consumption. Our dataset consists of over 4000
homes and was collected by PG&E from customers in
Northern California who had smart meters between 1/2/2008
and 12/31/2011. According to estimations based on survey
data, heating and cooling (air conditioning and refrigerators)
comprise over 39% of total consumer electricity usage (U.S.
Energy Information Administration 2009) and thus are dom-
inant uses for consumers. Clearly, we expect temperature to
have a strong correlation with these uses and thus we provide
contextual supervision in the form of temperature informa-

tion. The PG&E data is anonymized, but the location of in-
dividual customers is identified at the census block level and
we use this information to construct a parallel temperature
dataset as in the previous example.

We present the result of our model at two time scales,
starting with Figure 4 (top), where we show disaggregated
energy usage for a single home over a typical summer and
winter week. Here we see that in summer, the dominant
source of energy consumption is estimated to be air con-
ditioning due to the context provided by high temperature.
In winter, this disappears and is replaced to a smaller extent
by heating. In Figure 4 (bottom), itemized energy consump-
tion aggregated across all 4000+ homes demonstrates these
basic trends in energy usage. Quantitatively, our model as-
signs 15.6% of energy consumption to air conditioning and
7.7% to heating, reasonably close to estimations based on
survey data (U.S. Energy Information Administration 2009)
(10.4% for air conditioning and 5.4% for space heating). We
speculate that our higher estimation may be due to the model
conflating other temperature-related energy usages (e.g. re-
frigerators and water heating) or to differences in popula-
tions between the survey and smart meter customers.

Conclusion and discussion

The disaggregation of smart meter data into itemized energy
uses creates large opportunities for increases in efficiency;
as smart meters are already widely deployed and have been
collecting data for the past several years, millions of homes
stand to benefit. However, disaggregating smart meter data
is a challenging task due to its low-resolution sampling and
lack of supervised information. We believe that with the de-
velopment of contextual supervision described in this paper,
we have made a significant advancement in this area that
has been previously dominated by methods that rely on ei-
ther high-resolution or supervised data that, unlike the smart
meter data, is not readily available.

An interesting direction for future work is the explicit
connection of our large-scale low-resolution methods with
the more sophisticated appliance models developed on
smaller supervised datasets with high-frequency measure-
ments. However, there are clear limitations as to what can be
observed in a whole home power trace that is only sampled
once an hour. The development of refined statistical models
that produce confidence intervals around their estimations is
one avenue for dealing with this uncertainty. Still, the largest
gains are likely to come from an increase in sampling fre-
quency, perhaps in a hybrid approach that varies the sam-
pling rate in order to capture more accurate high-frequency
snapshots during periods of high activity.
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Appendices to “Contextually Supervised Source Separation with Application to
Energy Disaggregation”

A  Proofs

In this section we prove the theoretical result of the paper, that when the contextual features are relatively uncorrelated
between different groups, we can recover the correct separation with high probability. We begin with a tail bound on
Gaussian random variables which is slightly specialized to handle the case of a singular covariance matrix.

Lemma 1. Suppose x© € R? ~ N(0, X) with rank(X) = n. Then

t\"? 1
Ptz < (&) ew{-jun-n] 1)
where X is the largest eigenvalue of 3.

Proof. By Chernoff’s bound

E [eanmnz]
P (el > 1) < — @
for any o > 0. For any € > 0, z ~ N (0,2 + €I ),
1
E [ea“Z“g} = (2m) P/ YT 4 eI| 712 /exp {—2ZT(Z +el) e+ asz} dz
— (27)P/2 ~1/2 1 r -1 -1 3)
= (2m) |2 + el exp | — 5% E+el) (I -2aX+el) )zpdz
= (2m) PS4+ eI| V2 (2m)P 28 + eI |V — 2008 + €I)|71/?
so taking the limit ¢ — 0, we have that E[e®/|#l3] = | — 2a%|~1/2. Since ¥ has only n nonzero eigenvalues,
11— 20%] =[] - 2a)) > (1 - 2a))" (4)
i=1
and so 1
P(lallz > ) < 5)

(1 — 2a\)/2e0t”
t—n\

Minimizing this expression over « gives @ = ;3= and substituting this into the equation above gives the desired
bound. O

Now we are ready to prove the main result. First, recall that our theoretical analysis is concerned with the special case
of /5 loss, no regularization and Gaussian noise; we assume
yi = Xi0; +w; (6)

for some 67 € R™ and w; ~ N(0, af[ ). Furthermore, recall that under the choice of /5 loss, our optimization
problem becomes
"1
min}i,gﬁze 2; §Hyi — X0i15
1=
(7N

k

subject to Z Yi =19
i=1



and by taking gradients we have the optimality conditions
yi— X0, +X=0 for i=1...k
XFyi — XTX,0;=0 for i=1...k

where A € R” is the vector of Lagrange multipliers corresponding to the constraints. These constraints imply that
XT'\ = 0 and summing over k£ we have

®)

g—X0+EkX=0
XTh=0
RTxn

©))

where # € R" is a concatenation of all the 0,’s, X € is a concatenation of all the X;’s and n = Zle n; is the
total number of features. This system of equations has the solution

6=(XTX)"'xTy (10)
which is simply the least-squares solution found by regressing ¢ on all of the features X . Finally, note that our theorem
is concerned with the recovery of the product X;6; which is often significantly easier than the recovery of 6; itself.

Theorem 1. Given data generated by the model (6), and estimating 0 via (10), we have that
E [||Xié,-, - X,;0*||§} = 2 tr XTX:(XTX)5! < o®nips (11)

where 02 = Zle o2 and p; = )\maX(XZTXi(XTX)i_il). Furthermore, for 6 < 0.1, with probability greater than
1-96

A 402n;p;log(1/8
RMSE(X,4;) < \/”"”T‘)g(/). (12)
Proof. To write the problem more compactly, we define the block matrix W € R7** with columns w;, and define the
“block-diagonalization” operator B : R — R"** as

61 O 0
0 6y -~ 0

Boy=| . . ] (13)
0 0 - 6

Since Y = X B(0*) + W,
XB(0) = XB((X"X)"'XT(XB(6*) + W)1)
= XB(B(0*))1 + XB (X"X)'Xx"W1) (14)
=XB(0*)+ XB((X"X)"'X"W1)
For simplicity of notation we also denote
weR" = (XTX)" ' XxTwi. (15)
Thus

XB(0*) — XB(0) = XB(u). (16)
Now, using rules for Gaussian random variables under linear transformations W1 ~ A(0,0%Ir) and so u ~
N(0,02(XTX)~1). Finally, partioning uy, ug, . . ., uy conformally with 6,
X,0" — Xi0; = Xpu; ~ N(0,0°X;(XTX) ;' X]) (17)
SO

~ 112
E [Hxia* — X0, ] = o?tr XT X, (XTX);;. (18)
2

Since 02 X; (X" X);;* X[ is a rank n; matrix with maximum eigenvalue equal to o2 p;, applying Lemma 1 above gives

- T "/’ 1 [ Te
2 2
P (RMSE(XiQi) > e) =P (||Xlul||2 >Te ) < (nm%) exp {2 <02m — nl) } . 19)
Setting the right hand side equal to § and solving for € gives
—W(=52/n iDi 2

where W denotes the Lambert W function (the inverse of f(z) = xe®). The theorem follows by noting that
—W(=8%"/e) < 4log 5 for all n > 1 when § < 0.1, with both quantities always positive in this range (note
that leaving the W term in the bound can be substantially tighter in some cases). O



