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Abstract— Short-term forecasting is a ubiquitous practice in
a wide range of energy systems, including forecasting demand,
renewable generation, and electricity pricing. Although it is
known that probabilistic forecasts (which give a distribution
over possible future outcomes) can improve planning and
control, many forecasting systems in practice are just used as
“point forecast” tools, as it is challenging to represent high-
dimensional non-Gaussian distributions over multiple spatial
and temporal points. In this paper, we apply a recently-
proposed algorithm for modeling high-dimensional conditional
Gaussian distributions to forecasting wind power and extend
it to the non-Gaussian case using the copula transform. On a
wind power forecasting task, we show that this probabilistic
model greatly outperforms other methods on the task of
accurately modeling potential distributions of power (as would
be necessary in a stochastic dispatch problem, for example).

I. INTRODUCTION

Forecasting, the task of predicting future time series
from past observations, is ubiquitous in energy systems. As
well-known examples, electricity system operators routinely
forecast upcoming electrical load and use these forecasts in
market planning [17], [19]; wind farms forecast future power
production when offering bids into these markets [7], [11],
[15]; and there is a growing use of forecasting at the micro-
scale for coordinating smart grid operations [1]. Despite their
ubiquity and the complexity of many forecasting methods,
most methods are ultimately employed as “point forecast”
strategies; users train a system to output point predictions of
upcoming values, typically to minimize a metric such as root
mean squared error. However, for many complex control and
planning tasks, such point forecasts are severely limited: the
processes that make up electrical demand, wind power, etc,
are stochastic systems and the notion of a “perfect forecast”
is unattainable. Thus, probabilistic forecasts, which output
a distribution over potential future outcomes instead of a
single prediction, are of substantial practical interest. Indeed,
studies have demonstrated that in the context of electrical
demand and wind power, probabilistic forecasts can offer
substantial benefits over point predictions [14].

Unfortunately, the challenge of probabilistic forecasts is
that it is often very hard to describe the joint distribution
over all predicted values because many variables of interest
are highly non-Gaussian and it can be difficult to accurately
model correlations in a high-dimensional output space. For
this reason, most of the literature on probabilistic forecast-
ing has often made simplifying assumptions, for example
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using specific forms of Gaussian linear models, such as
autoregressive moving average (ARMA) models (e.g. [10]);
or only predicting non-Gaussian marginal distributions for
single output variables (e.g. [9]). Indeed, past work has
explicitly highlighted the challenge of developing models
that can capture joint distributions over future values.

In this paper, we apply and extend a recently-proposed
method for learning high-dimensional conditional Gaussian
distributions, called sparse Gaussian conditional random
fields, resulting in a method that is able to both capture
high-dimensional correlations between a very large num-
ber of output variables and model non-Gaussian marginal
probabilities. We accomplish this by 1) applying recent
techniques in machine learning and statistics, which model
high-dimensional correlations by exploiting sparsity in the
inverse covariance matrix, and by 2) using copula transforms
to capture non-Gaussian marginal distributions. We apply
this model to the task of wind power forecasting (a setting
where capturing non-Gaussian distribution and temporal and
spatial correlation is critical), and show that it is able to make
probabilistic predictions far better than forecasts that do not
explicitly model spatial and temporal correlation. We also
highlight the applicability of the method to challenging open
problems in this area such as wind power ramp prediction.

II. THE PROBABILISTIC FORECASTING SETTING

We consider the following setting: let zt ∈ Rn denote
a vector-valued observation at time t; for example, the ith
element of zt, denoted (zt)i could denote the power output
by a particular wind farm at time t, and i could range over
a collection of wind farms. We let wt ∈ Rm denote a set of
(known) exogenous variables that may affect the evolution of
the sequence; for example, wt may include the current time
of day, day of the year, and even external variables such
as wind forecasts at upcoming time points. The goal of our
forecasting setting is to predict Hf future values given Hp

past values and the exogenous variables:

Given zt−Hp+1:t, wt, predict zt+1:t+Hf
. (1)

This setting can be referred to as the vector autoregressive
exogenous (VARX) setting [13]; however, this terminology
is also used to describe a particular form of probabilistic
model for the sequence, so we just refer to it generally as a
multivariate forecasting problem.

Although predicting a single estimate of future observa-
tions from past observations can be very useful in many
situations, we often want to understand more broadly the



distribution of possible future observations given past obser-
vations and exogenous factors, denoted as

p(zt+1:t+Hf
|zt+1:t+Hf

, wt). (2)

We are particularly interested in the case where individual
observations zt are high-dimensional and we want to predict
their evolution over a relatively long time horizon, resulting
in a high-dimensional probability distribution. The task is
made more challenging by the fact that the observations may
not have Gaussian distributions (indeed, in the case of our
wind power setting, they typically do not) and by the fact that
we may have relatively few past observations upon which to
build our high-dimensional model.

A. Relation to existing settings and models

A common method for handling such settings is a vector
autoregressive exogenous model in which we model future
observations as a linear combination of past observations,
exogenous variables, and a Gaussian noise term

zt+1 =

Hp−1∑
i=0

Θizt−i + Ψwt + εt (3)

where Θi ∈ Rn×n and Ψ ∈ Rn×m are model parameters,
and εt ∼ N (0,Σ) is a zero-mean Gaussian random variable
with covariance Σ. If we want to make forecasts over a
multiple future time points, we can iteratively apply this
model or explicitly build an additional VARX model to
predict zt+2 from past values.

A common extension to the autoregressive framework is
to add a moving sum of noise variables, resulting in the
autoregressive moving average (ARMA) model (these and
similar extensions are described in several sources, e.g. [3]).
Additionally, we may choose Θ such that the overall system
has at least one unit root (the ARIMA model) or consider
only a certain periodic set of past observations (the seasonal
ARIMA model). These and other approaches have been used
extensively in the literature, and while they do impose a joint
probabilistic model over future observations, they are very
limited in the form of this distribution (multivariate Gaussian
with a particular covariance matrix).

In the sequel we will consider forecasting using a model
that allows for more general dependencies between predicted
variables, can capture non-Gaussian marginal distribution
of the variables via a copula transform, and which can be
learned from very little data by exploiting sparsity. We focus
largely on extensions of the pure autoregressive setting, but
the model can also be extended to the ARMA setting by
introducing additional latent variables.

III. FORECASTING WITH THE SPARSE GAUSSIAN
CONDITIONAL RANDOM FIELD

Here we describe the sparse Gaussian conditional random
field (SGCRF), a model that has has recently been proposed
by several authors [16], [21], including our own work [20]
which develops the algorithm we apply here. In this paper,
we focus on the extension of this method to the case of non-
Gaussian output variables and the application to probabilistic

forecasting in energy systems. For a full description of the
algorithm and theoretical analysis, see [20] which focuses on
the pure machine learning aspects of the model.

For simplicity of notation, we refer to the set of all known
variables as a single vector x ∈ Rn, while the unknown
variables we are attempting to predict are given by y ∈ Rp

x =


zt
zt−1

...
zt−Hp+1

wt

 , y =


zt+1

zt+2

...
zt+Hf

 . (4)

In this section we first present the pure SGCRF formulation,
which models y|x as a Gaussian distribution, exploiting
sparsity to capture high-dimensional correlation using very
few model parameters. We then discuss the extension to
non-Gaussian distributions via the copula transform and
summarize the algorithm.

A. The pure SGCRF model
The SGCRF models y|x as a multivariate Gaussian distri-

bution in terms of its exponential family form, via precision
(inverse covariance) and mean parameters rather than a
covariance and mean. The advantage of this formulation is
sparsity: in many forecasting domains, virtually all variables
share some degree of correlation (for instance, the wind
ten hours from now may be correlated with the wind one
hour from now, in a purely statistical sense) and thus
modeling the full joint distribution requires a large number
of parameters. However, it is well-known that the inverse
of the covariance matrix for a Gaussian captures just the
conditional independencies of the distribution and can be
highly sparse even when the covariance matrix is dense. In
the non-conditional case, this fact has been exploited by
several authors to formulate efficient convex methods for
sparse inverse covariance estimation using the `1 penalty [2],
also known as the graphical lasso [5].

For prediction tasks such as probabilistic forecasting, it
has repeatedly been observed that a discriminative approach
modeling the conditional distribution (y|x) can be superior
to the generative approach of modeling the full distribu-
tion (y, x) [12]. Thus, we extend sparse inverse covariance
estimation to the discriminative case, jointly modeling the
correlations in the output variables along with their condi-
tional dependence on input features. Since the discriminative
setting coincides with the standard notion of a conditional
random field [18], we refer to this model as the sparse
Gaussian conditional random field (SGCRF).

Formally, the SGCRF models the distribution y|x as

p(y|x; Θ,Λ) =
1

Z(x)
exp

{
−1

2
yT Λy − xT Θy

}
(5)

where Λ ∈ Rp×p and Θ ∈ Rn×p are the parameters of the
model, and Z(x) is the partition function (used to ensure the
distribution over y integrates to one) given by

1

Z(x)
= c|Λ|1/2 exp

{
−1

2
xT ΘΛ−1Θx

}
(6)



where c is a constant term that is independent of x, Λ, and
Θ. Critically, we can express models with high correlation
between variables even though Λ and Θ are sparse. To
see this, note that the model can easily be transformed to
mean/covariance form

p(y|x) ∼ N (−Λ−1ΘTx,Λ−1) (7)

but Λ−1Θ and Λ−1 are likely dense even when Λ and Θ
are sparse. Thus, in the forecasting setting, each element
of our prediction zt+1:t+Hf

can depend on every element of
zt−Hp+1:t and wt. By exploiting sparsity, we learn the model
efficiently from much less data than would be required to
estimate the mean and covariance directly.

B. A second-order optimization method for the SGCRF

Next, we describe an efficient second-order optimization
method for the SGCRF which exploits the sparse structure of
the solution with an active set approach. In particular, given
a collection of input-output pairs {xi, yi}, i = 1, . . . ,m, we
estimate the parameters Λ and Θ using maximum likelihood
and encourage sparsity by adding an additional `1 penalty
λ(‖Λ‖1 + ‖Θ‖1), where λ is a regularization parameter and
‖ · ‖1 denotes the elementwise `1 norm of a matrix. This
results in the optimization problem

minimize
Λ,Θ

log |Λ|+ tr ΛSyy + 2 tr ΘSyx+

tr Λ−1ΘTSxxΘ + λ(‖Λ‖1 + ‖Θ‖1)
(8)

where Syy, Syx and Sxx are sample covariance matrices

Syy =
1

m

m∑
i=1

yiy
T
i , Syx =

1

m

m∑
i=1

yix
T
i , Sxx =

1

m

m∑
i=1

xix
T
i .

(9)
Although this is a convex problem, existing solvers suffer
from slow convergence due in part to the coupling of the
parameters in the matrix-fractional term tr Λ−1ΘTSxxΘ; in
practice, forecasting over long time horizons across multiple
locations quickly becomes intractable. Therefore, we develop
a custom second-order method which is several orders of
magnitude faster than standard solvers, enabling us to apply
this method to large-scale probabilistic forecasting tasks such
as forecasting wind power production over several adjacent
wind farms and multiple days. Here we give the motivation
and highlight the key technical points of the algorithm, but
for complete details and theoretical analysis see [20].

The main idea is to decompose the objective function
into a smooth term plus regularization term and find the
descent direction by iteratively optimizing a regularized ver-
sion of the second-order approximation to the smooth term.
In general, for an optimization problem with the objective
f(x) + λ‖x‖1, the second-order Taylor expansion of f is

f(x+ ∆) ≈ g(∆) ≡ f(x) +∇xf(x)T ∆ +
1

2
∆T∇2

xf(x)∆

(10)
where ∇xf(x) and ∇2

xf(x) denote the gradient and Hessian
respectively. For a fixed x, finding ∆ that minimizes this

second-order expansion along with the `1 penalty is given
by the solution to the regularized quadratic program

d = arg min
∆

g(∆) + λ‖x+ ∆‖1 (11)

which we solve using coordinate descent. Given this di-
rection, we choose our step size using backtracking line
search and iterate until convergence. Note that our model is
parameterized by two matrices Λ and Θ and thus the descent
direction is pair of matrices, ∆Λ and ∆Θ.

Using coordinate descent for computing the descent di-
rection is particularly appealing since it allows us to exploit
sparsity in the solution by maintaining a small active set.
In particular, even though Λ and Θ are comprised of p(p+
1)/2 + np different variables, due to the sparsity induced
by the `1 penalty and the nature of forecasting applications,
we expect the majority of these coordinates to be zero. We
exploit this fact by considering only the set of variables
that violate the optimality conditions; optimizing over Λij

(respectively Θij) only if

|(∇Λf(Λ,Θ))i,j | > λ or Λij 6= 0

|(∇Θf(Λ,Θ))i,j | > λ or Θij 6= 0.
(12)

It can be shown that this heuristic produces an algorithm
that converges to the optimal solution even though the
descent direction at each step is not necessarily optimal. In
practice, for problems with a sparse solution, this results
in a substantial speed increase over the naive approach of
considering every variable.

Finally, in order to make coordinate descent efficient,
it is critical to cache and iteratively update certain matrix
products. The gradient and Hessian of our objective are
quite involved due to the tr Λ−1ΘTSxxΘ term, however
performing the coordinatewise updates efficiently reduces
to maintaining the product of ∆ΛΛ−1 and ∆ΘΛ−1. At
each step in the coordinate descent inner loop, we reuse
these products and when we update a single coordinate,
(∆Λ)ij ((∆Θ)ij), we must update the corresponding ith
row of ∆ΛΛ−1 (respectively ∆ΛΛ−1). It can be shown
that the resulting algorithm achieves superlinear convergence,
which in practice allows this model to be applied to many
previously intractable probabilistic forecasting problems.

C. Non-Gaussian distributions via copula transforms

The above SGCRF is limited in that it can only model the
distribution over y as a multivariate Gaussian. To overcome
this limitation, we employ a (Gaussian) copula transform
[22], a method for converting multivariate Gaussian distribu-
tions into multivariate distributions with arbitrary marginal
distributions. Previous work has applied the copula transform
to extend the sparse Gaussian MRF to non-Gaussian distri-
butions [8] and here we extend this to the SGCRF, forming
a model which is well-suited for probabilistic forecasting in
a wide variety of energy systems.

Formally, suppose u ∈ R is a univariate random variable
with cumulative distribution function (CDF) F ; when we



only have samples of u, we use the empirical CDF

F̂ (u) =
1

m

m∑
i=1

1{u < ui}. (13)

In the case that we expect the variables to come from known
distribution (e.g. the Weibull distribution for modeling wind
speeds), we could use the analytical CDF of this distribution
directly. The copula transform simply converts the sample
distribution to a uniform [0, 1] random variable by the CDF
F , then applies the inverse normal CDF Φ−1 to transform
the [0, 1] random variable into a Gaussian random variable.
Our algorithm models the variables using a SGCRF in this
transformed Gaussian space, and then transforms back to the
original distribution by applying the inverse copula transform
(the normal CDF Φ followed by the inverse CDF F−1).

D. Final Algorithm

As with all learning methods, using SGCRFs consists of a
training stage where we learn the parameters that maximize
the model’s likelihood on past observations. Then, for a new
scenario (denoted x′ ∈ Rn), we use the model to make
predictions about the future observations y′. The training
stage consists of the following elements:

1) Given data (xi, yi), for i = 1, . . . ,m (recall that each
xi consists of Hp past observations and external inputs
wt, and each yi consists of Hf future observations),
first estimate the univariate marginal distributions of
each (yi)j , denoted Fj .

2) Transform each the yi variables to a variable with
marginal Gaussian distributions ỹi by applying the
elementwise copula transform

(ỹi)j = Φ−1(Fj((yi)j)) (14)

3) Train a SGCRF model (i.e., estimate the Θ and Λ
parameters) on (xi, ŷi), i = 1, . . . ,m.

With a model, we can perform any of the following tasks:

• Compute the most likely output: Compute the mean
in the Gaussian space ỹ′ = −Λ−1ΘTx′; then transform
each element of ỹ′ using the inverse copula transform

(ŷ′)j = F−1(Φ((ỹ′)j)) (15)

• Compute the probability of a given output y′: Con-
vert y′ to the Gaussian space using (14) and compute

p(y′|x′) =p(ỹ′|x′; Θ,Λ)

=
1

Z(x′)
exp

{
−1

2
(ỹ′)T Λỹ′ − (x′)T Θỹ′

}
(16)

• Draw a random sample of future observations:
Sample

ỹ′ ∼ N (−Λ−1ΘTx′,Λ−1) (17)

and then apply the inverse copula transform (15) to ỹ′.

TABLE I
COMPARISON OF PREDICTION ERROR

Algorithm RMSE
Linear Regression 0.1560
Linear Regression + copula 0.1636
ARMAX 0.1714
SGCRF 0.1488
SGCRF + copula 0.1584

IV. APPLICATION TO WIND FORECASTING

In this section, we describe the primary applied result of
this paper, an application of the above probabilistic forecast-
ing method to a real-world wind power prediction task. We
use data from the GEFCom 2012 forecasting challenge, a
wind power forecasting competition that was recently held on
Kaggle [6], where the goal was to predict power output from
7 nearby wind farms over the next 48 hours using forecasted
wind speed and direction as input variables.

In our setup, we model wind power production jointly
across all wind farms as zt ∈ R7 and include the forecasted
wind at each farm as exogenous variables. We model the
non-linear dependence of the wind power using radial basis
functions (RBFs) with centers and variances tuned using
cross-validation, resulting in 10 RBFs for each time point
and location and wt ∈ R3360. We also include autoregressive
features for past wind power over the previous 8 hours
which we found experimentally to be sufficient to capture
the autoregressive behavior of wind power in this dataset. In
our framework, the input and output variables (xt, yt) are
compromised of wt and zt ranging over past and future time
points

xt =


zt
...

zt−7

wt

 , yt =

 zt+1

...
zt+48

 (18)

resulting in xt ∈ R3416 and yt ∈ R336.
We fit the model using 80% of the provided data (874

training examples) and report results on the held out set. As
baselines, we consider a linear regression model (LR) which
predicts each output independently and an ARMAX model
with AR(3) and MA(2) components, both using the same
input features as the SGCRF.

A. Probabilistic predictions

Typically, forecasting systems are evaluated solely on the
quality of the point forecasts produced and we see in Table I
that, on this basis, the SGCRF method performs significantly
better than linear regression and ARMAX. Due to the high-
dimensionality of the feature space relative to the number
of training examples, we expect the `1 penalty employed
by the SGCRF to be statistically efficient in identifying
the underlying structure of the correlations in wind power
production and the dependence of wind power on wind
forecasts; indeed in Figure 1, we see that the estimated
parameters exhibit a high degree of sparsity.



Fig. 1. Sparsity patterns Λ and Θ from the SGCRF model. Λ is estimated
to have 1412 nonzero entries (1.2% sparse) and Θ is estimated to have 7714
nonzero entries (0.67% sparse). White denotes zero values and wind farms
are grouped together in blocks.

TABLE II
COVERAGE OF CONFIDENCE INTERVALS

Method Task 90% 95% 99%

LR
Aggregate farms 0.6943 0.7653 0.8600
Aggregate times 0.3790 0.4451 0.5364

Both 0.1944 0.2500 0.3333

LR + copula
Aggregate farms 0.7256 0.8051 0.9040
Aggregate times 0.4028 0.4663 0.5728

Both 0.2176 0.2639 0.3380

ARMAX
Aggregate farms 0.5682 0.6473 0.7570
Aggregate times 0.6779 0.8188 0.9544

Both 0.2454 0.3102 0.4213

SGCRF
Aggregate farms 0.8267 0.8791 0.9443
Aggregate times 0.6104 0.6885 0.7976

Both 0.4306 0.5370 0.6389

SGCRF + copula
Aggregate farms 0.8981 0.9468 0.9830
Aggregate times 0.8743 0.9266 0.9722

Both 0.8796 0.9259 0.9676

However, we are primarily interested not in the accuracy
of point forecasts, but in the ability of the models to capture
the distribution of future power production. Indeed, as shown
in the same Table I, the inclusion of the copula transform
degrades the performance of the models in terms of RMSE;
this is expected since by assuming a Gaussian distribution
over the noise, the untransformed models are explicitly
minimizing mean squared error. RMSE alone is a poor
measure of how well an algorithm can actually predict future
observations: if we judge the algorithms by the ability to ac-
curately predict the range of possibilities for future outcomes,
a different picture emerges. For example, a natural task for
a wind farm operation would be to generate a distribution
over total power produced by all seven wind farms in the
next 24 hours, in order to establish 95% confidence intervals
about the power to be produced; this could in turn by used by
stochastic optimal dispatch method, to determine how much
power to generate from other sources.

Table II illustrates the coverage of the confidence intervals
generated by different approaches, evaluated on a held-out
test set of the wind power data. For each example in the
test set, we used each method to generate many samples
of upcoming wind power and for each of these samples,
we computed the total power aggregated over all the farms,
all times, or both, and used these to generate histograms
of the aggregated power. Finally, we used these histograms

0 50 100
0

0.05

0.1

0.15

0.2

0.25

x

P
ro

b(
E

ne
rg

y 
=

 x
)

 

 
LR
LR + copula
SGCRF + copula

0 50 100
0

0.05

0.1

0.15

0.2

0.25

x

P
ro

b(
E

ne
rg

y 
=

 x
)

Fig. 2. Examples of predictive distributions for total energy output from
all wind farms over a single day.

to estimate 90%, 95%, and 99% confidence intervals of the
aggregate power, and evaluated how often the true total wind
power fell into that interval.

As seen in Table II, the SGCRF + copula model produces
intervals that map very closely to their desired coverage level,
whereas linear Gaussian and ARMAX models perform much
worse. To see why this occurs, we show in Figure 2 several
of these estimated distributions of aggregate power, sam-
pled from the different models. The independent Gaussian
models are substantially overconfident in their predictions,
as multiple i.i.d. random variables will tend to tighten the
variance, leading to vastly inaccurate predictions when those
variables are in fact highly correlated. We note that we
could also consider a joint linear model by forming the
unregularized MLE estimate for the covariance matrix, but in
general this is not well-suited for high-dimensional problems
and in fact is undefined for p > m. The ARMAX model
does capture some of the correlation across time via the
moving average component and we see in Table II that
it performs significantly better than linear regression when
aggregating predictions across multiple times. However, the
SGCRF with the copula transform clearly achieves the best
results implying that it is more accurately capturing the
disperse nature of the actual joint distribution.

B. Application to ramp detection

One particularly appealing possibility for the probabilis-
tic forecasting methods is in the area of predicting wind
“ramps,” times when power experiences a sudden jump from
a relatively low to a relatively high value. Because wind
power grows with the cube of wind speed in Region 2 of the
turbine operating conditions (before the wind turbines reach
rated power), a small increase in wind speed can lead to a
large change in power, and predicting when these ramps oc-
cur is one of the primary open challenges in wind forecasting.
Indeed, a well-known issue with many forecasting methods
is that while they may accurately predict that a ramp will
occur, they are significantly limited in accurately capturing
the uncertainty over where the ramp will occur [4].

Although a detailed analysis of the ramp prediction ca-
pabilities of our approach is not the main focus on this
paper, we briefly highlight the potential of our approach
in this task. In particular, because the model accurately
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Fig. 3. Samples drawn from the linear regression model (top), and SGCRF
model (bottom)

captures correlations in the predicted observations over time,
if we draw random samples from our model, then we expect
scenarios where the ramp occurs at different times; this is in
contrast to most “independent” probabilistic methods, which
would assume a fairly tight distribution over possible future
scenarios. This situation is illustrated in Figure 3, where we
show the mean prediction along with 10 samples drawn from
each model. Again, in a stochastic optimal control task, an
operator would be much better served by considering the
possible scenarios generated from our model than from the
independent probabilistic model, as they consist of several
different timings for the upcoming power ramp.

V. CONCLUSION

In this paper, we present a probabilistic forecasting ap-
proach based on state-of-the-art methods in machine learn-
ing that can efficiently model high-dimensional and non-
Gaussian joint distributions over its predictions. Such prob-
abilistic forecasting is capable of more accurately capturing
the true distribution and can be an indispensable tool for
making accurate predictions of the actual range of possi-

ble observations. From a larger perspective, these meth-
ods highlight a highly desirable direction for future work:
new machine learning approaches that can produce high-
dimensional probabilistic forecasts. But to fully exploit these
models, we also need stochastic dispatch and optimal power
flow methods than can exploit this uncertainty to mitigate
risks inherent with renewable intermittency. Integrating these
planning approaches with probabilistic models thus seems
to be a key direction for future work in power systems
operation.
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