
Epigraph projections for fast general convex programming

Po-Wei Wang POWEIW@CS.CMU.EDU

Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213 USA

Matt Wytock MWYTOCK@STANFORD.EDU

Electrical Engineering Department, Stanford University, Stanford, CA 94305 USA

J. Zico Kolter ZKOLTER@CS.CMU.EDU

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA

Abstract
This paper develops an approach for efficiently
solving general convex optimization problems
specified as disciplined convex programs (DCP),
a common general-purpose modeling frame-
work. Specifically we develop an algorithm
based upon fast epigraph projections, projections
onto the epigraph of a convex function, an ap-
proach closely linked to proximal operator meth-
ods. We show that by using these operators, we
can solve any disciplined convex program with-
out transforming the problem to a standard cone
form, as is done by current DCP libraries. We
then develop a large library of efficient epigraph
projection operators, mirroring and extending
work on fast proximal algorithms, for many com-
mon convex functions. Finally, we evaluate the
performance of the algorithm, and show it often
achieves order of magnitude speedups over exist-
ing general-purpose optimization solvers.

1. Introduction
Although convex optimization techniques underly a large
number of machine learning algorithms, there has been a
traditional tension between general purpose optimization
methods and specialized algorithms. General purpose al-
gorithms, exemplified by standard cone form solvers like
linear, second order, and semidefinite cone solvers, with
the addition of modeling languages such as cvx (Grant &
Boyd, 2008) or cvxpy (Diamond & Boyd, 2015) (which
convert problems to these forms), provide a very flexi-
ble “rapid prototyping” framework for convex optimiza-

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

tion. However, these methods typically do not scale be-
yond medium-size problems, and are not well-suited to the
larger problems that make up much current machine learn-
ing work. This has lead to the development of a num-
ber of specialized solvers for many problems of interest
including support vector machines (Platt, 1999; Shalev-
Shwartz et al., 2011; Chang & Lin, 2011), ranking ap-
proaches (Joachims, 2002), sparse inverse covariance es-
timation (Friedman et al., 2008; Hsieh et al., 2014), etc,
just to name a very small number of examples. Recently,
many special purpose algorithms have started to use proxi-
mal operators as a key building block.

This current work looks to begin bridging the gap between
specialized and general purposes solvers. The first main
contribution of this work is a method for converting any
disciplined convex program (DCP) into a form that can be
directly solved by proximal methods, without converting
to cone form. Doing so requires a new set of operators
for epigraph projections, an operator related to but dis-
tinct from most existing proximal operators; specifically,
for some convex function f : Rn → R, epigraph projec-
tions are optimization problems of the form

epif (v, s) = argmin
x,t

{‖x−v‖22+(t−s)2 | f(x) ≤ t} (1)

i.e., they are a projection of some (v ∈ Rn, s ∈ R) onto the
epigraph set {(x, t) | f(x) ≤ t}. Thus, the second main
contribution of this work is the development of a wide set of
epigraph projection algorithms (plus some additional prox-
imal operators), which in turn can solve a very broad range
of DCPs without ever resorting to standard cone transfor-
mations. To build these fast epigraph projections opera-
tors we develop new optimization approaches, including
an implicit dual Newton method and a O(n) “sum-of-clip”
solver, both of which we detail in later sections. Finally, we
implement these methods in a generic optimization solver,
and show significant speedup over existing general-purpose
approaches, often an order of magnitude or more.

Epigraph projections for fast general convex programming

2. Background
Disciplined convex programming Disciplined convex
programing (DCP) (Grant et al., 2006) is a modeling frame-
work for convex programs that allows very general convex
problems to be specified using a relatively small set of con-
vex atomic function and set of compositional rules that pre-
serve convexity. For instance, a basic rule states that for
h : Rk → R, gi : Rn → R, and one of the following holds
for each i = 1, . . . , k:

• gi convex, h convex nondecreasing in argument i
• gi concave, h concave nonincreasing in argument i
• gi affine, h convex,

then f = h(g1(x), . . . , gk(x)), is convex (see e.g. Boyd &
Vandenberghe (2004, §3.2.4) for details). The DCP ruleset
is sufficient but not necessary for a problem to be convex:
the “log-sum-exp” function is convex, but cannot be veri-
fied as such by the above rules. However, log-sum-exp can
be represented as a separate atomic function that is convex
(and monotonic in its arguments). In practice, most con-
vex problems can be written using the DCP ruleset with a
relatively small set of atoms.

In addition to this verification, DCP libraries also provide a
means of converting the problems to a standard form cone
problem. Each functional atom also provides an graph im-
plementation of the function, a representation of the func-
tion as the solution to a linear cone problem. For example,
the `1 norm has the graph form

‖x‖1 = min
y

1T y, subject to−y ≤ x ≤ y. (2)

Once an optimization problem has been verified as convex
by the DCP rules, we replace all instances of DCP atoms
with their corresponding epigraph implementation (intro-
ducing new variables as needed). The resulting problem,
which must be itself a linear cone problem, is guaranteed
to be equivalent to the original optimization problem, and
can then be solved by standard form solvers.

Proximal methods A recent trend in machine learning
optimization methods has been the increased development
of algorithms based upon proximal operators. Given a con-
vex function f : Rn → R, the proximal operator is defined
as

proxλf (v) = argmin
x

λf(x) +
1

2
‖x− v‖22. (3)

Crucially, for many functions f , including many non-
smooth functions, we can compute the proximal operator
in closed form (or if not, at least compute it to numerical
precision very efficiently). For instance, the proximal oper-
ator for the `1 norm is given by soft thresholding (Donoho,
1995), proxλ‖·‖1(v) = max{|v|−λ, 0}·sign(v), where all
operators are applied elementwise.

Generally speaking, “proximal algorithms” refer to any op-
timization method that uses a proximal operator in its iter-
ation. Such algorithms are not new, with the original proxi-
mal point algorithm proposed in 1976 (Rockafellar, 1976),
but they have seen increased usage in recent years, often
in conjunction with the increasing use of `1 regularization;
see e.g. (Parikh & Boyd, 2013) for recent survey of several
such methods.

Operator splitting techniques are one class of proximal al-
gorithm, which solve a composite optimization problem

minimize
x

f(x) + g(x), (4)

typically by exploiting fast proximal operators for f and g.
A general review of operator splitting algorithms is given
in (Ryu & Boyd, 2016), and two algorithms of particular
recent interest are Douglas-Rachford splitting (Douglas &
Rachford, 1956) and the alternating direction method of
multipliers (ADMM) (Gabay & Mercier, 1976; Boyd et al.,
2011). Ultimately, our algorithm uses ADMM to solve the
resulting problems after transforming them to a suitable
form, though other operator splitting methods can be ap-
plied as well. Of particular relevance to our problem is the
splitting cone solver (SCS) (O’Donoghue et al., 2013), an
application of ADMM to linear cone programs; together
with existing DCP libraries, this system is very compara-
ble to our own (a solver capable of solving DCP problems
using proximal methods), and comparisons to SCS will be
one of the primary focuses in later sections. Also related
is the TFOCS algorithm (Becker et al., 2011), which uses
first order methods to solve several classes of cone prob-
lems, though it does not solve general DCPs.

In the general theme of proximal algorithms, there have
been a few papers that do consider epigraph projections
in a limited manner. For example, Tofighi et al. (2014)
use a epigraph projection onto a total-variation-type norm
described via a linear program for image deconvolution;
Chierchia et al. (2012) describe projections on to the epi-
graph of the `2 and `∞ norms (in the later case using a naive
O(n log n) algorithm), for a few specialized optimization
problems; and Harizanov et al. (2013) use an epigraph pro-
jection onto a very specific function useful for image pro-
cessing. None of these approaches relate to solving general
optimization problems, nor do they the develop the range
of epigraph projections that we cover.

3. Converting DCPs to proximal form with
epigraph projections

In this section, we show that any DCP can be solved us-
ing a proximal algorithm that employs standard proximal
operators plus epigraph projections. In particular we show
that any DCP composed entirely of atoms from some set
of functions G (but which can be composed according to

Epigraph projections for fast general convex programming

the DCP ruleset to form much more complex functions that
do not admit efficient proximal operators or epigraph pro-
jections) can be solved using only proximal operators and
epigraph projections for functions g ∈ G; thus, if we imple-
ment proximal and epigraph projection operators for every
element in a DCP atom library, we can directly solve the
problem without ever using any of the DCP graph imple-
mentations, but just the relevant operators directly. This is
formalized as follows
Theorem 1. Consider the DCP optimization problem

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , p

Ax = b

(5)

with optimization variable x, affine constraints A ∈ Rm×n
and b ∈ Rm, and convex functions fi : Rn → R built via
the DCP ruleset from convex atoms in a set G. Then this
optimization problem can be written equivalently as

minimize
x̄

N∑
i=1

f̄i(x̄)

subject to Āx̄ = b̄

(6)

for some expanded set of variables x̄ ∈ Rn̄ such that x =
x̄I0 for some set I0; affine constraints Ā ∈ Rm̄×n̄ and
b̄ ∈ Rm̄; and convex functions f̄ : Rn̄ → R of the form

f̄i(x̄) =

{
g(x̄Ii)
I{g(x̄Ii) ≤ x̄ti}

or (7)

for some atomic function g ∈ G where Ii selects some sub-
ject of the indices and ti 6∈ I selects the epigraph variable.

Again, the key point here is that although atom g ∈ G ad-
mits efficient operators, the functions fi made up of com-
positions of these functions can be much more complex
(one simple example for a robust SVM is below). But the
theorem states that the problem can be transformed into an
equivalent one that only requires proximal operators and
epigraph projections for functions in the atom set G.

The proof of Therem 1 is straightforward, but requires
a slightly more formal definition of the representation of
DCP functions; we describe this only briefly here, with
more detail about DCPs in general available in Grant et al.
(2006). Each DCP function is represented as a expression
tree, where each non-leaf node in the tree must be a DCP
atom (which itself can be either convex, concave, or affine),
and each leaf node must be a variable or a constant. For ex-
ample, an `∞ robust SVM (see Appendix A.4 for details
about the derivation of this objective term) can be written
as the optimization problem

minimize
θ

λ

2
‖θ‖22 +

m∑
i=1

max{0, 1−yi ·θTxi+‖PT θ‖1}.

(8)

+

×

∥ · ∥22

θ

sum

λ max{0, ·}

+

1 × ∥ · ∥2

×θ−diag(y)X

θP T

Figure 1. A DCP expression tree representing an `∞ robust SVM
optimization objective.

Figure 1 shows the DCP expression tree for this objective:
‖ · ‖22, ‖ · ‖1, and max{0, ·} atoms are convex, the sum, +
and × atoms are affine (the × atom under DCP must have
a constant on one side), the leaf node θ is a variable, and
the λ, 1, −diag(y)X and PT leaf nodes are constants.

Proof of Theorem 1. The proof proceeds by considering
each DCP function fi as an expression tree of depth n,
and employs a type of “bottom up” reduction to reduce
the tree to one of level n − 1, plus some additional equal-
ity and epigraph constraints. We select some leaf node
at level n, which we denote l1 and consider its immedi-
ate parent g and siblings, l2, . . . , ln. We introduce a new
variable l̂ and, based upon whether g is affine, convex, or
concave, we add the constraint g(l1, . . . , ln) {=,≤,≥} l̂:
we add an equality constraint for g affine and place these
constraints into the Āx̄ = b̄ matrix; and we add ≤ con-
straints for g convex and ≥ constraints for g concave,
and introduce the appropriate epigraph indicator functions
f̄i = I{g(l1, . . . , ln) {≥,≤} l̂} in these two cases. Finally,
we replace the entire subtree with the l̂ variable. We repeat
this process for all leaves at level n, resulting in an equiva-
lent expression tree of depth n−1 (plus additional equality
constraints and epigraph indicators).

When we reach the root node of the tree for the objective
function f0, we simply add the expression itself as a func-
tion f̄i = g (or by way of optimization, we immediately
terminate if the root node is an addition operator and the
nodes at depth 2 already have efficient proximal operators
or epigraph projections). For the root nodes of expres-
sion trees for fi, i ≥ 1, we add the epigraph constraint
f̄i = I(g(l1, . . . , ln) ≤ l̂) plus the constraint l̂ = 0.

Example The theorem is best illustrated by example, so
we consider here how we can use this approach to trans-
form the robust SVM problem (8). This objective com-
poses the hinge loss, a linear function of the parameters θ,
and an `1 norm inside the hinge loss, and there is no prox-

Epigraph projections for fast general convex programming

imal operator that can be applied directly to the entire top-
level objective terms. However, the objective still admits a
DCP formulation, as shown in Figure 1, and applying the
operations from Theorem 1 (using atoms for the squared
`2 norm, hinge function max{0, ·}, and `1 norm) results in
the new variables and constraints

l̂1 ⇒ PTx = l̂1

l̂2 ⇒ ‖l̂1‖1 ≤ l̂2
l̂3 ⇒ 1− diag(y)Xθ + 1l̂2 = l̂3

(9)

and the optimization problem over new variable x̄ =
(x, l̂1, l̂2, l̂3)

minimize
x̄

λ

2
‖θ‖22 +

∑
max{l̂3, 0}+ I{‖l̂1‖1 ≤ l̂2}

subject to PTx = l̂1

1− diag(y)Xθ + 1l̂2 = l̂3.

(10)

This is an optimization problem in the form (6): each term
in the objective is either one of the atomic functions, or an
indicator of the epigraph of an atomic function, plus addi-
tional linear constraints over these variables.

Optimization approaches Finally, as an immediate
corollary of the above theorem comes the fact that we can
solve the modified DCP problem using just a sequence
of proximal and epigraph projection operators of just the
atomic functions. The proof here is algorithmic, and comes
by simply applying an operator splitting algorithm like
ADMM directly to the modified problem (6). Indeed, the
solver we use in Section 5 uses an ADMM solver, though
many operator splitting approaches can solve problems of
the form (6) equally well. We omit the full derivation for
brevity (see e.g. Boyd et al. (2011) for a full derivation of
ADMM in this so-called consensus setting), but briefly, to
solve (6) we can introduce N copies of the x̄ variable, plus
a consensus variable z, and solve the optimization problem

minimize
x̄1,...,x̄N ,z

,

N∑
i=1

f̄i(x̄i) + I{Āz = b̄}

subject to x̄i = z, i = 1, . . . , N

(11)

which results in the update rules (assuming for simplicity
an augmented Lagrangian parameter ρ = 1)

x̄k+1
i ← proxf̄i(u

k
i − zk)

zk+1 ←
[
I ĀT

Ā 0

]−1 [1
N

∑N
i=1(x̄k+1

i + uk)
b̄

]
uk+1
i ← uki + x̄k+1

i − zk+1.

(12)

Since the proximal operator for the indicator of a set is sim-
ply the projection onto that set, the proximal operator for f̄i

terms that are indicators of an epigraph set is exactly

proxf̄i(v) = epig(vIi , vti). (13)

Thus, the solution above requires computing only proximal
and epigraph projection operators for the underlying atoms
in the DCP, as stated originally. In practice, we make a few
further refinements of this algorithm (the splitting consen-
sus variable z can be created jointly with the constraints
Ax̄ = b, and some prox operators can directly incorporate
affine terms), but the above method is suffices to show the
key point: that we can solve any DCP problem built from
atoms for which we can implement efficient proximal op-
erators and epigraph projections.

4. Fast epigraph projection solvers
While proximal operators for many functions have been
studied extensively in the machine learning and optimiza-
tion literature, there has been very little treatment of epi-
graph projections. Therefore, because we need these op-
erators to solve general DCP problems using the method
described previously, in this section we develop a number
of methods for efficiently computing the epigraph projec-
tion for a wide set of convex atoms.

Consider the optimization problem for epigraph projection

minimize
x,t

1

2
‖(x, t)− (v, s)‖22

subject to f(x) ≤ t.
(14)

The Lagrangian of this problem is given by

L(x, t, λ) =
1

2
‖(x, t)− (v, s)‖22 + λ(f(x)− t). (15)

Minimizing over x and t gives the solutions

x? = proxλf (v), t? = s+ λ, (16)

which correspond to the dual problem

maximize
λ≥0

Pλf (v)− 1

2
λ2 − λs, (17)

where
Pλf (v) = min

x
λf(x) +

1

2
‖x− v‖22 (18)

denotes the objective obtained by the proximal operator.
The dual problem is concave with a single variable λ, so
it can always be solved via bisection. However, the bisec-
tion algorithm takes O(log 1/ε) to iterations to reach ac-
curacy ε, which can itself become a bottleneck. A main
contribution of this paper, therefore, is the development of
more efficient epigraph projection algorithms in many set-
tings, often with practical (and theoretical) efficiency that
is nearly that of the equivalent proximal operator itself. In

Epigraph projections for fast general convex programming

developing these methods, we also develop some number
of new proximal algorithms as well, for which we know of
no existing methods in the literature. A summary of the
operator we develop is shown in the Appendix, Table 2.

In the remainder of this section, we detail several of the
approaches that we use to develop fast epigraph projec-
tion operators (and sometimes also proximal operators) for
the convex atoms listed in this table. Although many of
the epigraph projection operators require specialized algo-
rithms, they broadly fall into five categories: those solved
by an exact analytical solution, by a primal-dual Newton
method, by a new optimization approach we refer to as the
implicit dual Newton method, by a new approach we call
the sum-of-max algorithm for finding zeros of piecewise
linear functions, and orthogonal matrix methods. As a final
note, for all functions that apply elementwise to vectors,
(i.e., the absolute value f(x) = |x|), we will be construct-
ing epigraph projections for the sum over all the entries

epif (v, s) = argmin
x,t:

∑
i f(xi)≤t

1

2
‖(x, t)− (v, s)‖2 (19)

as this strictly generalizes the case of constructing an epi-
graph for each element individually.

4.1. Exact methods

While many proximal operators have a closed form solu-
tion, a relatively smaller number of epigraph projections
have them. A few notable exceptions are the elementwise
square f(x) = x2 and the `2 norm. For the square func-
tion, for instance, note that the dual epigraph problem can
be solved by the following derivation

proxλ(·)2(v) = argmin
x

λx2 +
1

2
(x− v)2 =

v

1 + 2λ

=⇒
(18)

Pλf (v) =
λ

1 + 2λ
v2

=⇒
(17)

d

dλ

(
λv2

1 + 2λ
− 1

2
λ2 − λs

)
= 0

=⇒ (
1

2
λ+ s)(1 + 2λ)2 − v2 = 0

(20)

which is a cubic equation in λ. Similarly the epigraph pro-
jection for the `2 norm is simply the well-known projection
on to the second order cone, which has a standard closed
form solution.

4.2. Primal-dual Newton method

For cases where the proximal operator itself has no closed
form, and the domain of the function is unconstrained, we
can employ a primal-dual Newton method to solve the re-
sulting epigraph form. Intuitively, this simply involves us-

ing Newton’s method to directly solve the Lagrangian mini-
max problem for the epigraph projection operator, resulting
in the optimality conditions

r(x, t, λ) =

 x− v + λ∇xf(x)
t− s− λ
f(x)− t

 = 0, (21)

which can be solved by computing the Newton direction ∆ I + λ∇2
xf(x) 0 ∇xf(x)

0 1 −1
∇xf(x)T −1 0

∆ = −r(x, t, λ)

(22)
and taking step sizes according to the standard line search
for primal-dual methods (Boyd & Vandenberghe, 2004, pg.
612). Note that although we are optimizing over λ ≥ 0,
this constraint does not affect the optimization problem,
because we know the optimal solution must have λ > 0
unless f(v) ≤ s, so we can treat the overall maximization
as an unconstrained problem. If f is an elementwise func-
tion, or if its Hessian has special structure (as in the case
of log-sum-exp, where the Hessian is diagonal plus rank
one), then the Newton step can be computed in O(n) time,
and the overall complexity of the algorithm is O(n) times
the number of Newton iterations (which in theory can vary
between O(log 1/ε) or O(log log 1/ε), but which in prac-
tice is very small, often around 10 iterations to reach ma-
chine precision for these problems). Epigraph projections
of the exponential, logistic, and log-sum-exp functions all
take this form.

4.3. Implicit dual Newton method

Sometimes the domain of the function is constrained and
the proximal operator has no closed-form solution, but can
still be solved efficiently. In these cases, the primal-dual
Newton method for epigraph projection is not usable, as
we would need to explicitly include the primal constraints.
However, it is still possible to solve the dual problem even
if we do not have a explicit dual formulation. Let

L(x, t, λ) ≡ 1

2
‖(x, t)− (v, s)‖2 + λ(f(x)− t) (23)

be the Lagrangian for the epigraph projection problem.
Consider∇(x,t)L(x) = 0 to be a constraint, whose solution
is the prox operator. Further, the solution (x(λ), t(λ)) =
(proxλf (v), s + λ) can be regarded as a function of λ.
Thus, if we apply the implicit function theorem (see e.g.
Dontchev & Rockafellar, 2009) on ∇xL = 0, we have that

dx

dλ
= −(I + λ∇2

xf(x))−1∇xf(x), (24)

for all x = proxλf . Then, for the dual objective

D(λ) ≡ min
x,t

L(x, t, λ) = L(x(λ), t(λ), λ), (25)

Epigraph projections for fast general convex programming

Algorithm 1 Implicit dual newton method for epigraph
projection
λ := 1
while not yet converged do
x := proxλf (v);
dD(λ)
dλ := f(x)− λ− s;

d2D(λ)
dλ2 := −∇f(x)T (I + λ∇2f(x))−1∇f(x)− 1;

if |dD(λ)
dλ | ≤ ε then break;

λ := max(0, λ− dD(λ)
dλ /d

2D(λ)
dλ2);

end while
return (proxλf (v), s+ λ).

we can derive the first and second derivative by the chain
rule and equation (25):

dD(λ)

dλ
=

d

dλ
L(x(λ), t(λ), λ) = f(x)− s− λ,

d2D(λ)

dλ2
=

d

dλ

dD(λ)

dλ
=

(
df(x)

dx

)T
dx

dλ
− 1.

(26)

Note that the relation holds only on x = proxλf (v). By
using these first and second derivatives, we can apply New-
ton’s method on the dual problem without computing it
directly, an approach we call the implicit dual Newton
method. If the proximal operator is also solved by a New-
ton method, the total number of iteration performed can be
(#Newton)2, but in practice is still usually very small.

Negative log epigraph The proximal operator of
−
∑
i log(xi) has the analytic solution

xi =
vi +

√
v2
i + 4λ

2
, where i = 1, . . . , n. (27)

By the implicit function theorem, we have

dxi
dλ

=
1
xi

1 + λ 1
x2
i

, ∀x = proxλf (v). (28)

Thus, the derivatives of D can be computed as

d

dλ
D = −λ− s−

∑
i

log xi,

d2

dλ2
D = −λ

n∑
i=1

1

x2
i

(
1

1 + λ 1
x2
i

)
− 1.

(29)

4.4. Sum of max solvers

Several atomic convex functions are non-smooth, present-
ing problems for the above approaches. For example, the
hinge loss, the absolute value, and the max of elements are

Algorithm 2 Linear time algorithm for absolute epigraph
y := u, a = −s, b = 0;
while y is not empty do

Choose a mid point ym in y, assign λ = |ym|;
Denote y(op) as the subvector satisfying [y (op) λ],
and #(y(op)) as the length of the vector;
Partition y to y<, y>, and y= by λ,
g := a+ ‖y>‖1 − λ · (1 + b+ #(y>));
if g < 0 then

a := a+‖y=‖1+‖y>‖1, b := b+#(y=)+#(y>);
y := y≤;

else if g > 0 then y := y≥;
else break;

end while
xi := sign(xi) max(0, |xi| − λ), ∀i,
t = s+ λ;
return (x, t);

all piecewise linear functions. By inspecting the KKT con-
ditions, we find that the dual solution λ of these problems
all satisfies the equation

F (λ) =

n∑
i=1

max(0, aiλ+ yi) + bλ+ c = 0, (30)

in which F (λ) is also a piecewise linear function. The
above equation can be solved in O(n) time by enumer-
ating all the knot points and performing a quick-select or
median-of-median algorithm (Cormen, 2009). The sum-k-
largest proximal operator can also be solved by a similar
equation with the max functions replaced by the clipping
functions. We present the simplified sum-of-max algorithm
for the absolute value epigraph in Algorithm 2.

Absolute value epigraph (`1 norm) As a concrete ex-
ample, the epigraph projection problem of f(x) = ‖x‖1
can be formulated as

min
x,t

1

2
‖(x, t)− (v, s)‖2, such that ‖x‖1 ≤ t. (31)

The above problem is equivalent to solving

F (λ) =
∑
i

max(0, |vi| − λ)− λ− s = 0 (32)

which can be solved by the sum-of-max method. We then
recover the epigraph projection (x, t) by

xi = sign(vi) max(0, |vi| − λ), t = λ+ s. (33)

4.5. Orthogonal matrix epigraph solvers

Finally, we consider the case of functions that take matrix
inputs f : Rm×n → R. Although many such functions can

Epigraph projections for fast general convex programming

be expressed just as equivalent vector/elementwise opera-
tions, we focus here on the class of orthogonally invariant
matrix functions, meaning that

f(UXV T) = f(X) (34)

for all orthogonal U, V . The immediate implication of this
fact is that f can depend only on the singular values σ(X)
of X , since given the singular value decomposition X =
USV T

F (X) = F (UTXV) = F (S). (35)

A further consequence is that if f(X) = g(σ(X)) for some
vector (or elementwise) function g, then the epigraph pro-
jection of f can be computed from the epigraph projection
of g (a similar property holds for proximal operators)

epif (W, s) = (U 0
0 1) epig(σ(W), s) (V 0

0 1)
T (36)

for W = Uσ(W)V T . This property follows from the fact
that the squared Frobenius norm is also orthogonally invari-
ant. Using this property, we can immediately develop epi-
graph operators for matrix expressions such as the negative
logdet term (− log applied to singular values), the nuclear
norm (`1 norm applied to singular values), and the operator
norm (maximum singular value).

5. Experiments
In this section we compare our method to existing meth-
ods for general convex programming based on conic
solvers. Our approach is implemented in Epsilon (Epigraph
Proximal Solver), a library based on the ideas described
in this paper: Epsilon accepts general convex programs
specified according to the DCP ruleset, transforms them
to a sum of proximal and epigraph operators as in Theo-
rem 1, and solves them by employing the library of opera-
tor implementations described previously. Epsilon is open
source and available at http://epopt.io, and all ex-
amples here are included in the distribution. We highlight
the benchmark problems briefly in this section, and include
a full description in Appendix A. Epsilon integrates di-
rectly with cvxpy (Diamond & Boyd, 2015) and thus we
make the natural comparison between Epsilon and the ex-
isting solvers which solve the conic form. In particular, we
compare Epsilon to ECOS (Domahidi et al., 2013), an inte-
rior point method, and SCS (O’Donoghue et al., 2013), the
“splitting conic solver”. In general, interior point methods
achieve highly accurate solutions but have trouble scaling
to larger problems and so it is unsurprising that Epsilon is
able to solve problems to moderate accuracy several orders
of magnitude faster than ECOS. On the other hand, SCS
employs an operator splitting method that is similar in spirit
to Epsilon, both being variants of ADMM. The main differ-
ence between Epsilon and SCS is in the intermediate repre-
sentation to which operator splitting is applied: SCS solves

102 103 104

Number of variables

10-2

10-1

100

101

102

103

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s) Epsilon

SCS

ECOS

101 102 103

Number of variables

10-2

10-1

100

101

102

103

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s) Epsilon

SCS

ECOS

Figure 2. Scaling comparison on Lasso (left) for problems with n
examples and 10n variables, and for support vector data descrip-
tion (right) with 10n examples and n variables.

problems that have been reduced to cone form (with oper-
ators for cone projections) while Epsilon solves the higher-
level representation with a larger library of proximal and
epigraph operators.

Standard problems We begin with a few standard ma-
chine learning problems: Lasso (Tibshirani, 1996), sparse
inverse covariance estimation (Banerjee et al., 2008) and
image classification on MNIST (LeCun et al., 1998). Table
1 shows that on these problems Epsilon achieves the same
level of accuracy as existing approaches often several or-
ders of magnitude faster. These are moderately-sized prob-
lems by ML standards, i.e. 1500 examples, 5000 features
for Lasso; 2000 examples, 1000 features for MNIST; and a
200 × 200 covariance estimation problem. However, inte-
rior point methods (ECOS) take minutes to hours on these
problems, demonstrating the lack of scalability tradition-
ally associated with general convex programming. SCS
(which itself is relatively recent work) does improve on
ECOS by an order of magnitude, but Epsilon is still 1-2
orders of magnitude faster. Figure 2 compares the running
times of each approach on the Lasso problem as problem
size increases: Epsilon solves larger problems in minutes
which require hours for SCS and ECOS.

Next, we consider several problems involving more com-
plex objectives that go beyond the standard regularized
loss functions for regression and classification found in tra-
ditional machine learning models (again, described much
more fully in Appendix A).

Robust SVM We consider the “`∞” robust SVM (based
upon those in (Lanckriet et al., 2003; Shivaswamy et al.,
2006) but with an `∞ uncertainy ball) described above by
the optimization problem (8).

Robust regression We consider the Chebyshev-like re-
gression problem (Boyd & Vandenberghe, 2004, pg. 323),
which solves a least-squares problem with A in some un-
certainty set described by Ā +

∑k
i=1 uiAi for ‖u‖2 ≤ 1.

This leads to the optimization problem

minimize
x

max
i=1,...,k

(
‖Aix‖2 + |āTi x− bi|

)
. (37)

Epigraph projections for fast general convex programming

Epsilon SCS ECOS
Time Objective Time Objective Time Objective

Lasso 3.7s 3.21× 101 20.5s 3.21× 101 215.7s 3.21× 101

MNIST (2000 examples) 2.53s 1.72× 103 219.6s 1.72× 103 1753.0s 1.72× 103

Sparse inverse covariance 2.09s 3.73× 102 25.1s 3.73× 102 - -
Robust SVM 52.9s 2.46× 101 174.6s 2.48× 103 141.6s 2.44× 101

Robust regression 27.3s 3.95× 10−1 66.5s 3.95× 10−1 67.9s 3.95× 10−1

SV data description 40.5s 2.23× 102 443.6s 2.23× 102 893.3s 2.23× 102

Sum-k-largest softmax 0.94s 2.14× 101 325.28s 2.14× 101 13.55s 2.14× 101

Table 1. Comparison of running time and objective value for Epsilon, SCS and ECOS, “-” indicates no result after 1 hour.

Sum-k-largest softmax We consider a form of “worst-
case” softmax regression, where we minimize the loss suf-
fered by only the top k elements in the data set. This can
be written as the optimization problem

minimize
Θ

k∑
i=1

z[i] + λ‖Θ‖22, (38)

where z[i] is the i-largest element of vector z, and zi =
− log softmax(xi, yi,Θ) is the multiclass softmax loss.

Support vector data description (SVDD) Given a set
of points, x1, . . . , xm ∈ Rn, SVDD (Tax & Duin, 2004;
Chang et al., 2007) describes those points with an n-
dimensional Euclidean ball by solving

minimize
ρ,a

m∑
i=1

[‖xi − a‖22 − ρ)]+ + λ[ρ]+ (39)

with optimization variables ρ ∈ R and a ∈ Rn.

The appeal of general convex programming is that mod-
els such as these can be rapidly developed and prototyped;
however, as with simpler problems, existing solvers of-
ten have difficultly scaling to larger problem sizes. Table
1 shows that for these problems Epsilon is at least 2-3x
faster than existing approaches and in some cases reduces
running times by 5-10x. For support vector data descrip-
tion, Figure 2 shows that for larger problems Epsilon is
significantly faster than SCS and ECOS, e.g. for a dataset
x1, . . . , x20000 ∈ R2000, Epsilon requires roughly 6.5 min-
utes, SCS 32 minutes and ECOS more than 1 hour.

In Figure 3 we also highlight, for the Lasso and SVDD
problems, the evolution of primal objective versus time.
We see that in both cases, Epsilon consistently has a lower
objective value after the same amount of computation time;
this holds for all the examples in Table 1, though we do not
include all plots for brevity. One element to note, however,
is that unlike interior points methods, ADMM-based meth-
ods cannot easily produce guaranteed bounds on the subop-
timality of a solution; although we do not pursue this issue
here, and simply show that the resulting solutions are far

0 10 20 30
Running time (seconds)

10-14

10-11

10-8

10-5

10-2

101

R
e
la

ti
v
e
 o

b
je

ct
iv

e

Epsilon

SCS

0 200 400 600 800 1000
Running time (seconds)

10-8

10-6

10-4

10-2

100

102

R
e
la

ti
v
e
 o

b
je

ct
iv

e

Epsilon

SCS

Figure 3. Comparison on time and primal objective suboptimality
for Lasso problem (top) and SVDD problem (bottom).

superior given reasonable running times, determining if we
can produce guaranteed bounds in our setting is an impor-
tant question for future work. Finally, although it is not the
focus of this paper, we also compare Epsilon to several spe-
cialized solvers developed for specific classes of problems,
and find that in many cases it is quite competitive, despite
being a fully generic approach; these results are presented
in Appendix B.

6. Conclusion
This paper has focused on the development of fast opti-
mization methods for general convex programs, here spec-
ified using a DCP modeling framework. We show that by
implementing just proximal and epigraph projection opera-
tors for a set of atomic convex functions, we can solve any
DCP built from those atoms. We have then implemented
a wide set of such operators and we show that the result-
ing solution methods can substantially outperform existing
approaches.

Acknowledgements This work was supported in part by
the National Science Foundation under award IIS-1320402,
and by support from Google. Matt Wytock was partly
funded by a scholarship from the Siebel Foundation.

References
Banerjee, Onureena, El Ghaoui, Laurent, and

d’Aspremont, Alexandre. Model selection through
sparse maximum likelihood estimation for multivariate

Epigraph projections for fast general convex programming

gaussian or binary data. The Journal of Machine
Learning Research, 9:485–516, 2008.

Becker, Stephen R, Candès, Emmanuel J, and Grant,
Michael C. Templates for convex cone problems with
applications to sparse signal recovery. Mathematical
Programming Computation, 3(3):165–218, 2011.

Boyd, Stephen and Vandenberghe, Lieven. Convex opti-
mization. Cambridge university press, 2004.

Boyd, Stephen, Parikh, Neal, Chu, Eric, Peleato, Borja, and
Eckstein, Jonathan. Distributed optimization and statisti-
cal learning via the alternating direction method of mul-
tipliers. Foundations and Trends R© in Machine Learn-
ing, 3(1):1–122, 2011.

Chang, Chien-Chung, Tsai, Hsi-Chen, and Lee, Yuh-Jye.
A minimum enclosing balls labeling method. 2007.

Chang, Chih-Chung and Lin, Chih-Jen. LIBSVM: A li-
brary for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2:27:1–27:27,
2011. Software available at http://www.csie.
ntu.edu.tw/˜cjlin/libsvm.

Chierchia, Giovanni, Pustelnik, Nelly, Pesquet, Jean-
Christophe, and Pesquet-Popescu, Béatrice. Epigraph-
ical Projection and Proximal Tools for Solving Con-
strained Convex Optimization Problems: Part I. Tech-
nical report, October 2012.

Cormen, Thomas H. Introduction to algorithms. MIT
press, 2009.

Diamond, Steven and Boyd, Stephen. CVXPY: A Python-
embedded modeling language for convex optimization.
Journal of Machine Learning Research, 2015. To appear.

Domahidi, Alexander, Chu, Eric, and Boyd, Stephen. Ecos:
An socp solver for embedded systems. In Control Con-
ference (ECC), 2013 European, pp. 3071–3076. IEEE,
2013.

Donoho, David L. De-noising by soft-thresholding. Infor-
mation Theory, IEEE Transactions on, 41(3):613–627,
1995.

Dontchev, Asen L and Rockafellar, R Tyrrell. Implicit func-
tions and solution mappings. Springer, 2009.

Douglas, Jim and Rachford, Henry H. On the numerical
solution of heat conduction problems in two and three
space variables. Transactions of the American mathe-
matical Society, pp. 421–439, 1956.

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang,
Xiang-Rui, and Lin, Chih-Jen. Liblinear: A library
for large linear classification. The Journal of Machine
Learning Research, 9:1871–1874, 2008.

Friedman, Jerome, Hastie, Trevor, and Tibshirani, Robert.
Sparse inverse covariance estimation with the graphical
lasso. Biostatistics, 9(3):432–441, 2008.

Friedman, Jerome, Hastie, Trevor, and Tibshirani, Rob.
Regularization paths for generalized linear models via
coordinate descent. Journal of statistical software, 33
(1):1, 2010.

Gabay, Daniel and Mercier, Bertrand. A dual algorithm for
the solution of nonlinear variational problems via finite
element approximation. Computers & Mathematics with
Applications, 2(1):17–40, 1976.

Grant, Michael and Boyd, Stephen. Graph implementa-
tions for nonsmooth convex programs. In Blondel, V.,
Boyd, S., and Kimura, H. (eds.), Recent Advances in
Learning and Control, Lecture Notes in Control and In-
formation Sciences, pp. 95–110. Springer-Verlag Lim-
ited, 2008.

Grant, Michael, Boyd, Stephen, and Ye, Yinyu. Disci-
plined convex programming. In Liberti, Leo and Mac-
ulan, Nelson (eds.), Global Optimization, volume 84 of
Nonconvex Optimization and Its Applications, pp. 155–
210. Springer US, 2006. ISBN 978-0-387-28260-2. doi:
10.1007/0-387-30528-9 7.

Harizanov, Stanislav, Pesquet, Jean-Christophe, and Steidl,
Gabriele. Scale Space and Variational Methods in Com-
puter Vision: 4th International Conference, SSVM 2013,
Schloss Seggau, Leibnitz, Austria, June 2-6, 2013. Pro-
ceedings, chapter Epigraphical Projection for Solving
Least Squares Anscombe Transformed Constrained Op-
timization Problems, pp. 125–136. Springer Berlin Hei-
delberg, 2013.

Hsieh, Cho-Jui, Sustik, Mátyás A., Dhillon, Inderjit S., and
Ravikumar, Pradeep D. Sparse inverse covariance ma-
trix estimation using quadratic approximation. CoRR,
abs/1306.3212, 2013.

Hsieh, Cho-Jui, Sustik, Mátyás A, Dhillon, Inderjit S, and
Ravikumar, Pradeep. Quic: quadratic approximation for
sparse inverse covariance estimation. The Journal of Ma-
chine Learning Research, 15(1):2911–2947, 2014.

Joachims, Thorsten. Optimizing search engines using
clickthrough data. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pp. 133–142. ACM, 2002.

Lanckriet, Gert RG, Ghaoui, Laurent El, Bhattacharyya,
Chiranjib, and Jordan, Michael I. A robust minimax ap-
proach to classification. The Journal of Machine Learn-
ing Research, 3:555–582, 2003.

Epigraph projections for fast general convex programming

LeCun, Yann, Cortes, Corinna, and Burges, Christo-
pher JC. The mnist database of handwritten digits, 1998.

O’Donoghue, Brendan, Chu, Eric, Parikh, Neal, and Boyd,
Stephen. Operator splitting for conic optimization
via homogeneous self-dual embedding. arXiv preprint
arXiv:1312.3039, 2013.

Optimization, Gurobi et al. Gurobi optimizer reference
manual. URL: http://www. gurobi. com, 2012.

Parikh, Neal and Boyd, Stephen. Proximal algorithms.
Foundations and Trends in optimization, 1(3):123–231,
2013.

Platt, John C. Advances in kernel methods. chapter Fast
Training of Support Vector Machines Using Sequential
Minimal Optimization, pp. 185–208. MIT Press, Cam-
bridge, MA, USA, 1999. ISBN 0-262-19416-3.

Rahimi, Ali and Recht, Benjamin. Random features for
large-scale kernel machines. In Advances in neural in-
formation processing systems, pp. 1177–1184, 2007.

Rockafellar, R Tyrrell. Monotone operators and the proxi-
mal point algorithm. SIAM journal on control and opti-
mization, 14(5):877–898, 1976.

Ryu, Ernest K and Boyd, Stephen. Primer on monotone
operator methods. To appear, Appl. Comput. Math., 15
(1), 2016.

Shalev-Shwartz, Shai, Singer, Yoram, Srebro, Nathan, and
Cotter, Andrew. Pegasos: Primal estimated sub-gradient
solver for svm. Mathematical programming, 127(1):3–
30, 2011.

Shivaswamy, Pannagadatta K, Bhattacharyya, Chiranjib,
and Smola, Alexander J. Second order cone program-
ming approaches for handling missing and uncertain
data. The Journal of Machine Learning Research, 7:
1283–1314, 2006.

Tax, David MJ and Duin, Robert PW. Support vector data
description. Machine learning, 54(1):45–66, 2004.

Tibshirani, Robert. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society. Series
B (Methodological), pp. 267–288, 1996.

Tofighi, Mohammad, Bozkurt, Alican, Kose, Kivanc, and
Cetin, A Enis. Deconvolution using projections onto the
epigraph set of a convex cost function. In Signal Pro-
cessing and Communications Applications Conference
(SIU), 2014 22nd, pp. 1638–1641. IEEE, 2014.

Epigraph projections for fast general convex programming

A. Experiment details
In this section we provide the details of the experiments
corresponding to the results presented in Section 5. In each
case we describe the underlying problem, the initial opti-
mization problem, and how this translates into proximal
form for the Epsilon solver (that is, a sum of objective terms
where each term has an efficient proximal operator or epi-
graph projection, plus a set of linear equality constraints),
using the transformations from Section 3. All these exam-
ples are included in the Epsilon distribution, available at
http://epopt.io.

A.1. Lasso

The Lasso problem is

minimize
θ

(1/2)‖Xθ − y‖22 + λ‖θ‖1, (40)

with input features X ∈ Rm×n, response variables y ∈
Rm, and model parameters θ ∈ Rn. The regularization pa-
rameter λ ≥ 0 controls the tradeoff between data fit and
the `1 regularization term which encourages sparsity in the
model parameters. The Lasso is especially useful in the
high-dimensional case where m < n as the sparsity in-
duced by `1 regularization effectively controls the number
of free parameters in the model, see Tibshirani (1996) for
details. The Lasso problem as written is already in proxi-
mal form with

f1(θ) = (1/2)‖Xθ − y‖22,
f2(θ) = λ‖θ‖1.

(41)

In our experiments, we generate X ∈ R1500×5000 from
a standard Normal distribution and set y = Xθ0 + ε
with θ0 having 1% nonzero standard Normal entries and
ε ∼ N (0, 0.052). We set the regularization parameter
λ = 0.5‖XT y‖∞.

A.2. Sparse inverse covariance

Sparse inverse covariance estimation models a multivariate
Gaussian distribution over n variables by solving the opti-
mization problem

minimize
Θ

− log |Θ|+ trSΘ + λ‖Θ‖1 (42)

where S ∈ Sn is the sample covariance, Θ ∈ Sn is the
estimated inverse covariance and the `1 norm ‖ · ‖1 is
applied elementwise. As with the Lasso, the `1 penalty
promotes sparse structure and is especially useful in the
high-dimensional case with more variables than samples
(m < n), see Friedman et al. (2008) for details. With re-
spect to our framework, given a proximal operator for the
− log | · | term, sparse inverse covariance estimation can

trivially be put in proximal form with

f1(Θ) = − log |Θ|+ trSΘ,

f2(Θ) = λ‖Θ‖1.
(43)

where in the construction of f1, we have exploited the fact
that any proximal operator can easily be combined with
a linear function (see e.g. Parikh & Boyd (2013) for de-
tails). In our experiments, we construct the sample co-
variance from 100 samples drawn from N (0,Θ−1

0) where
Θ0 ∈ S200 has uniform random entries and is 1% nonzero.

A.3. MNIST (2000 images)

The MNIST dataset (LeCun et al., 1998) consists of hand-
written digits, constructed with the goal of building a clas-
sifier for automatically recognizing each digit ({0, . . . , 9})
in each image. As a linear classifier applied directly to the
raw pixels performs poorly, we generate random Fourier
features (Rahimi & Recht, 2007) and train a classifier us-
ing sparse softmax regression

minimize
Θ

`(X, y; Θ) + λ‖Θ‖1 (44)

whereX ∈ Rm×n are the image features, y ∈ {0, . . . , 9}m
are the image labels, λ ≥ 0 is the regularization parame-
ter and the softmax loss, parameterized by Θ ∈ Rn×10, is
given by

`(X, y; Θ) =

m∑
i=1

(
log

10∑
k=1

exp(xTi θk)− xTi θyi

)
. (45)

Unlike the least squares loss employed in the Lasso, the
softmax loss cannot easily be composed with an arbitrary
linear function and this requires the introduction of an addi-
tional auxiliary variable, Z ∈ Rm×10. With this additional
variable, the proximal form for this problem is given by

f1(Z) =

m∑
i=1

(
log

10∑
k=1

exp(Zik)

)

f2(Θ) = λ‖Θ‖1 −
m∑
i=1

xTi θyi

(46)

with equality constraints

Z = XΘ (47)

In our experiments, we train the classifier on 2000 images
using 1000 random Fourier features and λ = 0.1.

A.4. Robust SVM

In our experiments we use an `∞ variant of the support vec-
tor machine, similar to the formulations in (Lanckriet et al.,
2003; Shivaswamy et al., 2006), but with an `∞ uncertainty

Epigraph projections for fast general convex programming

Function Proximal / epigraph operator
Type Atom Definition Method Complexity

E
le

m
en

tw
is

e
x
,y
∈
R

Absolute f(x) = |x| (≡ ‖x‖1) soft thresholding
sum-of-max

O(n)
O(n)

Square f(x) = x2 (≡ ‖x‖22) linear equation
cubic equation

O(n)
O(n)

Hinge f(x) = max{x, 0} soft thresholding
sum-of-max

O(n)
O(n)

Deadzone f(x) = max{|x| − ε, 0}, ε ≥ 0
soft thresholding

sum-of-max
O(n)
O(n)

Quantile f(x) = max{αx, (α− 1)x}, 0 ≤ α ≤ 1
soft thresholding

sum-of-max
O(n)
O(n)

Logistic f(x) = log(1 + exp(x))
Newton

Primal-dual Newton
O(n) · (# Newton)
O(n) · (# Newton)

Inverse positive f(x) = 1/x, x ≥ 0
cubic equation

Implicit dual Newton
O(n)

O(n) · (# Newton)

Negative log f(x) = − log(x), x ≥ 0
quadratic equation

Implicit dual Newton
O(n)

O(n) · (# Newton)

Exponential f(x) = exp(x)
Newton

Primal-dual Newton
O(n) · (# Newton)
O(n) · (# Newton)

Negative entropy f(x) = x · log(x), x ≥ 0
Projected Newton

Implicit dual Newton
O(n) · (# Newton)
O(n) · (# Newton)2

KL Divergence f(x, y) = x · log(x/y), x, y ≥ 0
Projected Newton

Implicit dual Newton
O(n) · (# Newton)
O(n) · (# Newton)2

Quadratic over linear f(x, y) = x2/y, y ≥ 0
Projected Newton

Implicit dual Newton
O(n) · (# Newton)
O(n) · (# Newton)2

V
ec

to
rx
∈
R

n

`2-norm f(x) = ‖x‖2
group soft thresholding

analytic projection
O(n)
O(n)

Maximum f(x) = maxi xi (‖x‖∞ ≡ maxi |xi|)
sum-of-max
sum-of-max

O(n)
O(n)

Sum-k-largest f(x) =
∑k

i=1 x[i] (x[i] ≥ x[i+1])
sum-of-clip

bisection
O(n)

O(n) · (# Bisection)

Log-sum-exp f(x) = log
(∑n

i=1 exp(xi)
) Newton

Primal-dual Newton
O(n) · (# Newton)
O(n) · (# Newton)

M
at

ri
x
X
∈
R

n
×
n

Negative log det f(X) = − log det(X), X ∈ Sn − log on λ(X) O(n3)
Nuclear norm f(X) = ‖σ(X)‖1, X ∈ Rm×n ‖ · ‖1 on σ(X) O(n3)
Spectral norm f(X) = ‖σ(X)‖∞, X ∈ Rm×n ‖ · ‖∞ on σ(X) O(n3)

Table 2. Complete list of proximal and epigraph projection operators implemented for this work. Most proximal operators (except
sum-k-largest) have appeared in some form in previous literature, but epigraph projections are typically novel to this work.

ball instead of an `2 uncertainty ball. In this setting, given
input data (xi, yi) we wish to train an SVM by minimizing
the standard regularized hinge loss,

minimize
θ

λ

2
‖θ‖22 +

m∑
i=1

max{0, 1− yi · x̄Ti θ} (48)

but where x̄i lies in some uncertainty set centered at xi,
x̄i = xi + Pu where ‖u‖∞ ≤ 1. This can be expressed as
the optimization problem

minimize
θ

λ

2
‖θ‖22+

m∑
i=1

sup
‖ui‖∞≤1

max{0, 1−yi·θT (x̄i+Pui)}

(49)

which, using the relation that sup‖u‖∞≤1 c
Tu = ‖c‖1

where, is equivalent to the optimization problem

minimize
θ

λ

2
‖θ‖22 +

m∑
i=1

max{0, 1−yi ·θTxi+‖PT θ‖1}.

(50)
As discussed in Section 3, this is transformed to proximal
form

f1(θ) =
λ

2
‖θ‖22

f2(z3) =
∑

max{z3, 0}

f3(z1, z2) = I{‖z1‖1 ≤ z2}

(51)

Epigraph projections for fast general convex programming

and equality constraints

z1 = PTx

z3 = 1− diag(y)Xθ + 1z2.
(52)

In our experiments, we generated X ∈ R2500×750 random
uniform [0,1], θ ∈ R750 also random uniform, and set y =
sign(xTi θ + N (0, 0.1)). To create well-separated points,
we further added xi ← xi + 0.7yi · θ, and chose P =
diag(N(0, 750)).

Support vector data description Given a set of unla-
beled points, x1, . . . , xm ∈ Rn, support vector data de-
scription (Tax & Duin, 2004; Chang et al., 2007) describes
those points with an n-dimensional Euclidean ball by solv-
ing

minimize
ρ,a

m∑
i=1

[‖xi − a‖22 − ρ)]+ + λ[ρ]+ (53)

with optimization variables ρ ∈ R and a ∈ Rn. The first
term penalizes points outside a ball centered at a with ra-
dius
√
ρ while the second term regularizes the radius with

λ ≥ 0 controlling the tradeoff. This problem is transformed
to proximal form with operators

f1(t, ρ) =

m∑
i=1

[ti]+ + λ[ρ]+

f3(a, s) =

m∑
i=1

I(‖xi − a‖22 ≤ si)
(54)

and equality constraint

t = s− ρ. (55)

In our experiments, we generate 5000 random points uni-
formly over the 200-dimensional unit hypersphere and then
choose 100 outliers at random and add noise, ε ∼ N (0, I);
we fit the model with λ = 1.

Robust Regression Consider a noisy matrix bounded by
a unit ball over some known perturbation directions Ai,

A = {Ā+ c1A1 + . . .+ cpAp | ‖p‖2 ≤ 1}. (56)

The maximum error incurred from performing linear re-
gression over the uncertain set can be written as

sup
‖c‖2≤1

‖(Ā+ c1A1 + . . .+ cpAp)x− b‖∞

= max
k

∣∣∣∣∣ sup
‖c‖2≤1

ck(Akx) + (āTk x− bk)

∣∣∣∣∣
= max

k

∣∣‖Akx‖2 + |āTk x− bk|
∣∣ .

(57)

For robust regression (Boyd & Vandenberghe, 2004, pg.
323), we wish to find a solution x that minimize this worst
possible error,

minimize
x

max
k

∣∣‖Akx‖2 + |āTk x− bk|
∣∣ . (58)

With additional variable t, u, v, p, q ∈ Rk, this problem is
transformed to proximal form with operators

f1(t) = max
i=1,...,k

(ti),

f2(p, u) =

k∑
i=1

I(‖pi‖2 ≤ ui),

f3(q, v) =

k∑
i=1

I(|qi| ≤ vi),

(59)

with equality constraints

t = u+ v,

pi = Aix,

qi = āTi x− bi, ∀i = 1, . . . , k.

(60)

In the experiment, we generate the Ā, Ai, and b from
uniform distribution, then normalize Ā and Ai to a unit
ball. We choose p = 5000 and A,Ai ∈ R10×200, for
i = 1, . . . , p.

sum-k-largest softmax The softmax loss is a multiclass
loss function defined as

softmax(x, y,Θ) =
exp(xTΘyi)∑
k exp(xTΘk)

, (61)

where Θ ∈ Rn×c is the weight for each class. The softmax
loss is commonly used in, for example, the regularized lo-
gistic regression, which can be formulated by the softmax
loss plus a regularization term. Here, we consider to mini-
mize the worst k loss incurred from the regression. I.e., we
only minimize

minimize
Θ

k∑
i=1

z[i] + λ‖Θ‖22, (62)

where z[i] is the i-largest element of vector z, and zi =
− log softmax(xi, yi,Θ) is the multiclass softmax loss.
With additional variable ui ∈ Rc, ∀i = 1, . . . ,m, this
problem is transformed to proximal form with operators

f1(Θ) = −
m∑
i=1

xTi Θyi + λ‖Θ‖22,

f2(z) = sum-k-largest(z),
f3(Θ, z) = I(log-sum-exp(ui) ≤ zi),

(63)

Epigraph projections for fast general convex programming

Time
Solver Problem Epsilon Solver

liblinear

hinge l1 3.71s 0.49s
hinge l1 sparse 14.26s 4.26s
hinge l2 3.58s 0.16s
hinge l2 sparse 1.82s 0.83s

glmnet

lasso 3.69s 0.84s
lasso sparse 13.58s 0.67s
logreg l1 3.70s 2.31s
logreg l1 sparse 6.69s 1.96s
mv lasso 7.14s 7.40s

Gurobi lp 0.33s 6.02s
qp 1.39s 4.12s

QUIC covsel 0.93s 6.24s

Table 3. Comparison of running times between Epsilon and spe-
cialized solvers.

with equality constraints

ui = xTi Θ, ∀i = 1, . . . ,m. (64)

In the experiment we choose X ∈ R400×10, k = 5, and
the number of classes to be 120. We generate the data
from normalized uniform distribution, and assign classes
uniformly.

B. Comparison with specialized solvers
In this section, we compare Epsilon to an assortment of
specialized solvers which are available for common prob-
lems. Before doing so, we emphasize that the general
convex programming approach offers many advantages to
specialized algorithms in terms of reuse and extensibility.
In addition, most convex problems do not have dedicated,

mature software packages readily available in common
mathematical programming environments (e.g. Matlab, R,
Python). Furthermore, even when specialized solvers are
available, translating problems to the interface provided by
a particular package requires effort to understand and con-
form to the idiosyncrasies of each implementation. In con-
trast, general convex programming offers a uniform syntax
and interface allowing problems to be easily formulated,
extended and solved.

In terms of running times, Table 3 compares Epsilon to four
dedicated software packages implementing specialized al-
gorithms: liblinear (Fan et al., 2008), glmnet (Friedman
et al., 2010), Gurobi (Optimization et al., 2012) and QUIC
(Hsieh et al., 2013). The default stopping criteria is used for
each solver, corresponding to moderate accuracy for Ep-
silon and high accuracy for the specialized solvers. For the
most part, Epsilon is competitive, although on a few prob-
lems liblinear and glmnet are significantly faster. This is
due to the ability of these specialized algorithms to exploit
sparsity in the solution which arises due to `1 regulariza-
tion (Lasso problems) or a small number of support vectors
in the dual SVM formulation (hinge problems). At present,
Epsilon does not take advantage of such structure and thus
may have a disadvantage on sparse problems.

On the other hand, Table 3 shows that Epsilon is sig-
nificantly faster than Gurobi and QUIC in solving lin-
ear/quadratic programs and sparse inverse covariance esti-
mation, respectively. However, it is important to highlight
that the specialized algorithms solve these problems to high
accuracy (e.g. tolerances of 10−8 or smaller) while Epsilon
targets only moderate accuracy (e.g. 10−3). For moder-
ate accuracy, the operator splitting approach can be highly
competitive, allowing Epsilon to be significantly faster on
some problems.

