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Abstract— We consider the task of omnidirectional path fol-
lowing for a quadruped robot: moving a four-legged robot along
any arbitrary path while turning in any arbitrary manner.
Learning a controller capable of such motion requires learning
the parameters of a very high-dimensional policy, a difficult
task on a real robot. Although learning such a policy can be
much easier in a model (or “simulator”) of the system, it can be
extremely difficult to build a sufficiently accurate simulator. In
this paper we propose a method that uses a (possibly inaccurate)
simulator to identify a low-dimensional subspace of policies that
spans the variations in model dynamics. This subspace will
be robust to variations in the model, and can be learned on
the real system using much less data than would be required
to learn a policy in the original class. In our approach, we
sample several models from a distribution over the kinematic
and dynamics parameters of the simulator, then formulate an
optimization problem that can be solved using the Reduced Rank
Regression (RRR) algorithm to construct a low-dimensional class
of policies that spans the major axes of variation in the space of
controllers. We present a successful application of this technique
to the task of omnidirectional path following, and demonstrate
improvement over a number of alternative methods, including a
hand-tuned controller. We present, to the best of our knowledge,
the first controller capable of omnidirectional path following with
parameters optimized simultaneously forall directions of motion
and turning rates.

I. I NTRODUCTION

In this paper we consider the task of omnidirectional path
following: moving a four-legged robot along any arbitrary
path while turning in any arbitrary manner. Examples of such
motion include walking in a circle while facing the circle’s
center, following a straight line while spinning around, orany
other “dancing” maneuver. In this paper we focus on “trot”
gaits: gaits where the robot moves two feet at a time.

A key technical challenge in building such a robust gait is
maintaining balance of the robot. Since the trot gait moves two
feet at once, the polygon formed by the supporting feet reduces
to a line, and it is very difficult to maintain any standard static
or dynamic stability criterion. Fortunately, when executing a
“constant” maneuver — that is, moving in a constant direction
while possibly turning at a constant rate — it is possible to
approximately balance the robot by offsetting the center of
mass by some fixed distance. However, in omnidirectional path
following we are frequently changing the direction of motion
and turning rate, so a complete policy must determine the
proper center offset forany given direction and turning rate.

This results in a high-dimensional class of control policies1,
which therefore tends to require a prohibitively large amount
of data from the real robot in order to learn.

It can be much easier to learn this high-dimensional policy
in a model (or “simulator”) of the system than on the real
robot; there are many advantages tomodel-based reinforce-
ment learning(RL): the simulator can be made deterministic,
we can save and replay states, we can take gradients of the
parameters, there is no risk of damage to the real robot, etc.
However, it can be extremely difficult to build a sufficiently
accurate simulator. Oftentimes a policy learned in the simula-
tor will perform very poorly on the real system.

In this paper, we propose a method that makes use of a
(possibly inaccurate) simulator to identify a low-dimensional
subspace of policies that spans the potential variations in
model dynamics. Our method is as follows: First, we draw
random samples from adistribution over the kinematic and
dynamic parameters of the simulator. We learn parameters
for the high-dimensional policy in each of these simulation
models. To learn a low-dimensional class of policies that can
represent the learned policies across all the sampled models
we formulate a dimensionality reduction optimization problem
that can be solved via the Reduced Rank Regression (RRR)
algorithm. Because this low-dimensional class is capable of
representing the learned policies in all the different simulation
models, the policy class is robust to variations in the model
dynamics. Finally, we learn a policy in this low-dimensional
class on the real robot. This requires much less data than would
be required to learn a policy in the original, high-dimensional
class of policies. We present a successful application of
this technique to the task of omnidirectional path following,
and demonstrate improvement over a number of alternative
control methods, including a hand-tuned controller. We also
present, to the best of our knowledge, the first controller
capable of omnidirectional motion with parameters optimized
simultaneously forall directions of motion and turning rates
— in the next section we clarify exactly how this work differs
from previous work in quadruped locomotion.

The rest of this paper is organized as follows. In Section II

1An important concept in this paper is the idea of thedimensionof a control
policy. This paper focuses on linearly-parametrized policies — that is, policies
that are specified by a set of linear coefficients. In this case, the dimension
of the policy is simply the number of parameters



we present background material and related work. In Section
III we give an overview of our controller (the full parametriza-
tion of the controller is given in the Appendix) and present
an online learning algorithm that is capable of learning the
proper balancing offsets for anyfixeddirection of motion and
turning rate. In Section IV we formally present our method
for constructing a low-dimensional policy class by sampling
from a distribution over simulation models then set up the
optimization problem, and describe our how to find its solution
using the Reduced Rank Regression algorithm. In Section V
we present and analyze our results on the real robotic system.
Finally, in Section VI we give concluding remarks.

II. BACKGROUND AND RELATED WORK

A. Quadruped Locomotion

There has been a great deal of work in recent years,
both in the robotics and machine learning communities, on
quadruped locomotion. Much of the research has focused on
static walking (moving one leg at a time, thereby keeping
the robot statically stable) including statically stable gaits
capable of omnidirectional path following [19]. In addition,
there has been much work on designing static gaits that can
navigate irregular terrain [6, 5, 11, 18]. As a whole this work
is generally tangential to the work presented here, since we
focus on the dynamic trot gait over flat terrain, which requires
very different approaches.

There has also been a great deal of work on developing
omnidirectional trot gaits, in particular for the Sony AIBO
robot. Much of this work is based on a trot gait, originally
developed by Hengst et. al. [13], that is potentially capable of
moving in any direction while turning at any rate. While the
parameters of the gait presented in [13] are hand-tuned, there
has been much subsequent work on gait optimization of this
and similar gaits. Several gait optimization methods have been
investigated, including evolutionary search methods [14,8,
27], direction set minimization [16] and policy gradient tech-
niques [17]. However, while the controllers in these works are
capableof omnidirectional motion in that they can walk in any
direction while turning at any rate, all the works listed above
focus on optimizing parameters only for onesingle direction
of motion at a time (usually forward walking). Additionally, as
noted in [27], gaits optimized for one type of motion typically
perform poorly on other maneuvers — for example, a gait
optimized for forward walking typically performs poorly when
attempting to walk backwards. In contrast, in this paper we
focus on learning a policy that performs well forall directions
of motion and turning rates.

Another vein of research in dynamic quadruped gaits fol-
lows upon work by Raibert [24, 25]. This and more recent
work [22, 21] achieve dynamic gaits — both trot gaits and
gallop gaits, which include a flight phase — by “hopping”
on compliant legs, which typically employ some form of
hydraulics. While this is a powerful technique that can allow
for very fast locomotion, we discovered very quickly that our
robot was not capable of generating sufficient force to jump
off the ground, effectively disallowing such methods.

Finally, since balancing the robot is such a key element in
developing a robust omnidirectional path following controller,
the literature on dynamic stability of robots is also very
relevant. There exist several criteria for ensuring dynamic
stability of legged robots [12, 23]. One of the most well-known
criteria is to ensure that Zero Moment Point (or ZMP) [29]
— which is similar to the center of mass projected on to the
ground plane, except that it accounts for inertial forces acting
on the robot — never leaves the supporting polygon. However,
when the robot has only two rounded feet on the ground the
supporting polygon reduces to a line, making it difficult to
maintain the ZMP exactly on this line. In addition, we found
it difficult to calculate the ZMP precisely on the real robot due
to the inaccuracy of the on-board sensors. For these reasons, in
this paper we focus on an approximate method for balancing
the robot.

B. Learning and Control

The method we propose in this paper is related to the area of
robust control theory. For a general overview of robust control,
see [31] and [9]. However, our work differs from standard
robust control theory in that the typical goal of robust control
is to find asinglepolicy that performs well in awide varietyof
possible models. In contrast, we make no assumption that any
such policy exists — indeed, in our application the optimal
policy depends very much on the particular model dynamics
— but rather we want to identify asubspaceof policies that
spans the potential variation of model dynamics. In the final
step of our method, we do search this subspace to find a policy
that is specific to the dynamics of the real system.

To learn the low-dimensional subspace of policies, we pose
an optimization problem that can be solved via the Reduced
Rank Regression (RRR) algorithm. The RRR setting was first
discussed in the statistics literature by Anderson [1]. Izenman
[15] developed the solution that we apply in this paper,
coined the term “Reduced Rank Regression,” and discussed
the relationship between this algorithm, Canonical Correlation
Analysis (CCA) and Principle Component Analysis (PCA).
RRR is discussed in great detail in [26], and there is a great
deal of active research on this algorithm, both from theoretical
[2] and numerical perspectives [10].

In the machine learning literature, the problem we formulate
can be viewed as an instance of multi-task learning [7, 3].
However, our setting does differ slightly from the prototypical
multi-task learning paradigm, since we do not ultimately care
how well we perform on most of the tasks, except insofar as
it helps us learn the one task we care about — i.e., we don’t
care how well the policies perform in the simulation models,
just how well the final controller performs on the real system.

Finally, we note that there has been recent work on the ap-
plication of dimensionality reduction techniques to control and
reinforcement learning. Mahadevan [20] uses Graph Laplacian
methods to learn a low-dimensional representation of value
functions on a Markov Decision Process (MDP). Roy et. al.
[28] use dimensionality reduction to compactly represent be-
lief states in a Partially Observable MDP. Our work is similar



Fig. 1. The LittleDog robot, designed and built by Boston Dynamics.

in spirit, except that we apply dimensionality reduction tothe
space of controllers, to learn a low-dimensional representation
of the control policies themselves.

III. A C ONTROLLER FOROMNIDIRECTIONAL

PATH FOLLOWING

In this section we present a parametrized gait for the
quadruped robot that is capable of omnidirectional path fol-
lowing. The design builds upon recent work on trot gaits for
quadruped locomotion in the robotics and machine learning
communities [13, 17]. The robot used in this work is shown in
Figure 1. The robot, known as “LittleDog,” was designed and
built by Boston Dynamics, Inc and is equipped with an internal
IMU and foot force sensors. State estimation is performed via
a motion capture system that tracks reflective markers on the
robot.

Our controller uses inverse kinematics to specify locations
for the four feet in Euclidean coordinates relative to the robot’s
body. While two feet move along the ground, the other two feet
moving through the air in a box pattern; this moves the robot
forward.2 We achieve lateral movement by rotating the angle
of all the four feet, and turn by skewing the angles of the front
and back or left and right feet. We specify paths for the robot
as linear splines, with each point specifying a desired position
and angle for the robot. The controller is closed-loop: every
time step we use the current state estimate to find a direction
and turning angle that forces the robot to follow the specified
path. A more detailed description of the gait is given in the
appendix.

A. Learning To Balance

We found that by far the most challenging aspect of design-
ing a robust controller was balancing the robot as it moved.
To balance the robot, our controller offsets the center of mass
of the robot by some specified amount(xoff , yoff).3 Without

2We also experimented with other locus shapes for moving the feet that
are common in the literature, such as a half ellipse or a trapezoid [17], but
found little difference on our robot in terms of performance.

3In the coordinate system we use, the positivex axis points in the direction
that the robot is facing, and the positivey axis points to the robot’s left.

a proper center offset, the robot will “limp” visibly while
walking. The challenge is to find a function that determines
the proper center offset for any given direction of motion and
turning rate. That is, given a direction angleψ and turning
rateω, we want to find functionsfx andfy such that

xoff = fx(ψ, ω), yoff = fy(ψ, ω).

Since the direction angle and turning rates are inherently
periodic — i.e., a direction angle of2π results in the same
center as an angle of0 — the Fourier bases are a natural
means of representing these functions. We therefore represent
fx as

fx(ψ, ω) = θT
x φ(ψ, ω)

whereθx ∈ R
k is a vector of coefficients and

φ(ψ, ω) = [cos(iψ) cos(jω), cos(iψ) sin(jω),

sin(iψ) cos(jω), sin(iψ) sin(jω)],

i, j = 1, 2, . . .

denotes firstk principle Fourier basis functions ofψ and
ω — here the range ofi and j are chosen so that the
dimension ofφ is also k. The function fy is represented
in the same manner, and learning a parametrization of the
controller requires learning the coefficientsθx and θy of this
approximation.

With this motivation, we first consider the problem of
finding the center offset for afixeddirection angle and turning
rate. We designed a online learning algorithm that, for fixed
ψ andω, dynamically adjusts the center offsets during control
so as to balance the robot. The intuition behind this algorithm
is that if the robot is balanced, then the two moving feet
should hit the ground simultaneously. If the two feet do not
hit the ground simultaneously, then the algorithm looks at
which of the two feet hit the ground first, and adjusts the
center offsets accordingly. If, for example, the back leg hits
the ground before the front leg, then the algorithm will shift
the center of mass forward, thereby tilting the robot forward,
and encouraging the front leg to hit the ground sooner. The
precise updates are given by

xoff := xoff + α(g(tFL − tBR) + g(tFR − tBL))

yoff := yoff + αg((tFL − tBR) − (tFR − tBL))
(1)

where α is a learning rate,tFL, tFR, tBL, tBR are the foot
contact times for the four feet respectively, andg(x) =
x2 · sgn(x), i.e., a quadratic function that preserves the sign of
its argument. So, for example, if the back left leg hits before
the front right,tFR − tBL > 0, so xoff is increased, shifting
the center of mass forward. The algorithm is similar in spirit
to the previously mentioned gait optimization algorithms for
the Sony AIBO gaits [14, 16, 8, 17, 27] in that it performs
online optimization of the gait parameters for a fixed direction
angle and turning rate. We implemented this algorithm both
in simulation and on the actual robot; for the actual robot
we used foot force sensors to determine when a foot hit the



ground.4 Convergence to a stable center position is generally
quite fast, about a minute or two on the real robot (assuming
no adverse situations arise, which we will discuss shortly).

Given a collection of direction angles, turning rates, and
their corresponding offsets, we can learn the coefficientsθx

and θy by least squares regression. Unfortunately, computing
a sufficient number center offsets on the real robot is a
time-consuming task. Although the algorithm described above
can converge in about a minute under ideal circumstances,
several situations arise that can slow convergence considerably.
Communication with the robot is done over a wireless channel,
and packet loss can make the robot slip unexpectedly, which
causes incorrect adjustments to the robot. Additionally, an
improper center offset (as would occur before the algorithm
converged) can make the robot move in a way that degrades
the joint angle calibration by bashing its feet into the ground.
Although it is significantly easier to find proper joint offsets in
simulation, it is difficult to create a simulator that accurately
reflects the center offset positions in the real robot. Indeed,
we invested a great deal of time trying to learn parameters
for the simulator that reflected the real system as accurately
as possible, but still could not build a simulator that behaved
sufficiently similarly to the real robot. The method we present
in the next section allows us to deal with this problem, and
efficiently learn center offsets for the real robot by combining
learning in both simulation and the real robot.

IV. L EARNING A LOW DIMENSIONAL POLICY

CLASS USING DIMENSIONALITY REDUCTION

In this section we present a method for solving the general
problem presented in the previous section: given some policy
learning task that can be framed as a least-squares problem,
we want to learn a low-dimensional class of policies that can
be learned using a very small amount of data from the real
system. We have at our disposal a simulator of the system,
but the simulator does not provide an accurate model of the
task we wish to solve. Although we focus in this paper on
the application of this method to the specific task of learning
a policy for omnidirectional path following, the formulations
we present in this section are general.

The intuition behind our algorithm is that even if it is
very difficult to learn the precise dynamic parameters that
would make a simulator accurately reflect the real world,
it may be much easier to specify adistribution over the
potential variations in model dynamics.5 Therefore, even if the
simulator does not mimic the real system exactly, by consider a
distribution over the model parameters, it can allow us identify
a smaller subspace of policies in which to search. The method
we propose is as follows:

1) Drawm random samples from a distribution over the dy-
namic and kinematic parameters of the simulator. Each

4Although the foot sensors on the LittleDog robot are not particularly
accurate in many situations, the trot gait hits the feet into the ground hard
enough that the foot sensors are able to function as a simple Boolean switch
indicating whether or not the feet have hit the ground.

5This claim is discussed further in Subsection IV-B.

set of parameters now defines a differently perturbed
simulation model.

2) In each simulation model, collectn data points, and
learn parameters for the high-dimensional policy by
least-squares regression.

3) Use the Reduced Rank Regression algorithm to learn
a small set of basis vectors that span the major axes of
variation in the space of controllers over all the sampled
models.

4) Learn a parametrization of the policy in this low-
dimensional class on the real robot.

More formally, suppose we are given a matrix of feature
vectors X ∈ R

n×k and we collect a set of of output
vectors {y(i) ∈ R

n}, i = 1, . . . ,m, where each of the
y(i)’s corresponds to the data points collected from theith
simulator. For example, in the balancing controller presented
in the previous section, each row ofX would contain thek-
dimensional Fourier expansion of some angle/turning rate,and
the corresponding entry iny(i) would contain the resulting
center offset — i.e., eitherxoff or yoff , since we learn the
parametrization of the two functionfx and fy independently
— in the ith simulator. We learn the policy parametersθ(i) ∈
R

k for the ith simulation model by solving the least squares
problem:

min
θ(i)

‖y(i) −Xθ(i)‖2
2 (2)

which has the well-known solutionθ(i) = (XTX)−1XT y(i).
Since we are trying to estimate ak-dimensional coefficient
vector, by a well known sample complexity result (see, e.g.
[4]), we needΩ(k) data points to find a solution.

Considering all them simulator models jointly, we form the
design matricesY ∈ R

n×m andΘ ∈ R
k×m,

Y =
[

y(1) . . . y(m)
]

, Θ =
[

θ(i) . . . θ(m)
]

and consider the problem6

min
Θ

‖Y −XΘ‖2
F . (3)

However, solving this problem is identical to solving each of
the least squares problems (2) individually for eachi; if we
want to learn the the coefficients for a policy on the real robot,
this approach offers us no advantage.

Instead, we consider the matricesA ∈ R
k×ℓ, B ∈ R

ℓ×m,
with ℓ≪ k and the problem

min
A,B

‖Y −XAB‖
2
F . (4)

In this setting, theA matrix selectsℓ linear combinations of the
columns ofX, and theB matrix contains the coefficients for
these linear combinations. In other words, this approximates
the coefficients asθ(i) ≈ Ab(i), wereb(i) is theith column of
B. The matrixA forms a basis for representing the coefficients
in all them simulation models.

The key advantage of this approach becomes evident when
we consider learning the parametersθ ∈ R

k of a policy on

6Here,‖ • ‖2

F
denotes the squared Frobenius norm,‖A‖2

F
=

P

i,j A2

ij .



the real robot. We approximateθ as a linear combination
of the columns ofA, i.e., θ = Ab. However, sinceA, as
defined above, has onlyℓ columns, we only need to learn
the ℓ-dimensional coefficient vectorb in order to approximate
θ. Again, by a standard sample complexity result [4], this
requires onlyO(ℓ) examples, and sinceℓ ≪ k, this greatly
reduces the amount of data required to learn the policy on the
real system.

In order to motivate the exact optimization problem pre-
sented in (4), we discuss other possible approaches to the
problem. First, we could solve (3) to find the least squares
solutionΘ, then run Principal Component Analysis (PCA) to
find a set of basis vectors that could accurately represent all the
columns ofΘ. However, this approach ultimately minimizes
the wrong quantity: we do not truly care about the error in
approximating the coefficientsθ(i) themselves, but rather the
error in approximating the actual data points. Second, we could
run PCA on theY matrix, which would result in a set of
basis vectors that could represent the data points across all
the different simulation models. However, we would require
some way of extending these bases to new data points not
in the training set, and this can be difficult.7 Instead, the
minimization problem (4) truly represents the error quantity
that we are interested in — how well our coefficients can
approximate the data pointsY — and so we consider this
problem directly.

Despite the fact that the optimization problem (4) is non-
convex, it can be solved efficiently (and exactly) by the
Reduced Rank Regression algorithm. We begin by noting that
(4) is identical to the problem

minΘ ‖Y −XΘ‖2
F

s.t. rank(Θ) = ℓ.
(5)

The solution to this Reduced Rank Regression problem, (5),
is given by

Θ = (XTX)−1XTY V V T (6)

where the columns ofV are theℓ principle eigenvectors of

Y TX(XTX)−1XTY. (7)

This result is proved in [26, Theorem 2.2]. Optimal values of
A andB can be read directly from this solution,

A = (XTX)−1XTY V B = V T .

Notice that the Reduced Rank Regression solution can be inter-
preted as the least squares solution(XTX)−1XTY projected
into the subspace spanned byV . WhenV is full rank — i.e.,
there is no rank constraint — thenV V T = I, and the solution
naturally coincides with the least squares solution.

After learningA andB, the final step in our algorithm is
to learn a representation of the policy on the real robot. To do

7There are certainly methods for doing this. For example, the Nyström
approximation [30] could be used compute a non-parametric approximation
to the outputy′ for previously unseen feature vectorx′. However, this would
require computing the outputs corresponding tox′ for all (or at least many)
of the simulators, making this technique less applicable for the real-time
situations we are concerned with.

this we collect, from the real system, a small set of data points
y ∈ R

p for some (new) set of feature vectorsX ∈ R
p×k, and

solve the least squares problem

min
b

‖y −XAb‖2
2

For b ∈ R
ℓ. For the reasons mentioned above,b can be

estimated using much less data that it would take to learn
the full coefficient vectorθ ∈ R

k. After learning b, we
approximate the robot’s policy parameters asθ = Ab.

A. Non-uniform Features

Note that one restriction of the model as presented above is
that the feature vectorsX must be the same for all simulations.
In our particular application of Reduced Rank Regression, this
does not seem to be overly restrictive, since the data pointsare
generated by a simulator. Therefore, we can typically choose
the data points to be whatever we desire, and so can simply
restrict them to be the same across all the simulation models.
Alternatively, the framework can be extended to handle the
case where the different simulation models have different
feature vectors, though the problem can no longer be solved
exactly.

Let X(i) denote the feature vector for theith simulation
model. We now want to minimize

min
A,B

m
∑

i=1

‖y(i) −X(i)Ab(i)‖2
2 (8)

whereb(i) is the ith column ofB. This is referred to as the
Seemingly Unrelated Regressions (SUR) model of Reduced
Rank Regression [26, Chapter 7]. We know of no closed form
for the solution in this case, but must instead resort to approx-
imate iterative methods. Note that (8), while not convex inA
andB jointly, is quadratic in either argument alone. Therefore,
we can apply alternating minimization: we first holdA fixed
and optimize overB, then hold theB fixed and optimize over
A; because each step involves unconstrained minimization of
a quadratic form, it can be analytically solved and computed
very efficiently. We repeat this process until convergence to a
fixed point. More elaborate algorithms typically impose some
form of normalization constraints on the two matrices [26].

We conducted extensive experiments with alternating min-
imization algorithms, when the feature vectors were chosen
to be different across the different simulations, and we found
performance to be nearly identical to the standard case for our
particular data set. Since the general method we propose does
allow for the feature vectors to be the same across all the
simulation models, we focus on the previous setting, where
the problem can be solved exactly.

B. Further Discussion

There are two elements of this proposed algorithm that
warrant further discussion. First, since the approach requires
specifying a distribution over kinematic and dynamic param-
eters of the simulator, the question naturally arises as to
how we may come up with such a distribution, and whether



specifying this distribution is truly easier than simply finding
the “correct” set of parameters for the simulator. However,
in reality it is likely that there does not existany set of
parameters for the simulator that reflects the real world. As
mentioned in the previous section, we expended a great deal
of energy trying to match the simulator to the real system
as closely as possible, and still did not achieve a faithful
representation. This is a common theme in robust control:
stochasticity of the simulator is important not only because
we believe the real world to be stochastic to a degree, but
because the stochasticity acts as a surrogate for the unmodelled
effects of the real world. Therefore, we use a straightforward
approach to modeling the distribution over simulators: we
use independent Gaussian distributions over several of the
kinematic and dynamic parameters. This approach worked
very well in practice, as we will show in the next section, and
it was generally insensitive to the variance of the distributions.

Second, in the method presented here, learning the high-
dimensional policy in each perturbed model is framed as a
least-squares regression task. This is advantageous because it
allows us to optimally solve the joint policy learning problem
over all perturbed models with a rank constraint — squared
error loss is essentially the only loss that can be optimally
solved with such a rank constraint. Were we to employ a
different method for learning the high-dimensional policies in
each perturbed model, such as policy gradient, then we would
have to resort to heuristics for enforcing the rank constraint on
the policy coefficient matrix. This may be necessary in some
cases, if the learning task cannot be adapted to a regression
problem, but here we focus on the case where the problem
can be solved optimally, as this was sufficient for our task of
omnidirectional path following.

V. EXPERIMENTAL RESULTS

In this section we present experimental results on applying
our method to learn a controller for omnidirectional path
following. In particular, we apply the technique proposed in
the previous section to the task of learning a balancing function
for the controller, as described in Section III. The physical
robot we used is described above in Section III. The simulator
we built is based on the physical specifications of the robot and
uses the Open Dynamics Engine (ODE) physics environment.8

Our experimental design was as follows: We first sampled
100 simulation models from a distribution over the simulator
parameters.9 In each of these simulation models, we used the
online centering algorithm described in Section III to find the

8ODE is available at http://www.ode.org.
9In greater detail, we varied the simulators primarily by adding a constant

bias to each of the joint angles, where these bias terms were sampled
from a Gaussian distribution. We also experimented with varying several
other parameters, such as the centers of mass, weights, torques, and friction
coefficients, but found that none of these has as great an effect on the resulting
policies as the joint biases. This is somewhat unsurprising,since the real robot
does exhibit constant joint biases. However, we reiterate the caveat mentioned
in the previous section: it is not simply that we need to learn the correct joint
biases in order to achieve a perfect simulator; rather, the results suggest that
perturbing the joint biases results in a class of policies that is robust to the
typical variations in model dynamics.

Fig. 2. Pictures of the quadruped robot following several paths.

proper center offset for a variety of fixed directions and turning
rates.10 In our experiments, we constrained the centering func-
tion (in both thex andy directions), to be a linear combination
of the first 49 Fourier bases of the direction angle and turning
rate. We then applied the Reduced Rank Regression algorithm
to learn a low-dimensional representation of this function
with only 2 parameters, effectively reducing the number of
parameters by more than 95%.11 Finally, to learn a policy
on the actual robot, we used the online centering algorithm to
compute proper center locations for 12 fixed maneuvers on the
robot and used these data points to estimate the parameters of
the low-dimensional policy.

To evaluate the performance of the omnidirectional gait and
the learned centering function, we used three benchmark path
splines: 1) moving in a circle while spinning in a direction
opposite to the circle’s curvature; 2) moving in a circle, aligned
with the circle’s tangent curve; and 3) moving in a circle
keeping a fixed heading. To quantify performance of the robot

10For each model, we generated 100 data points, with turning angles spaced
evenly between -1.0 and 1.0, and direction angles from 0 to2π.

11Two bases was the smallest number that achieved a good controller with
the data we collected: one basis vector was not enough, threebasis vectors
performed comparably to two, but had no visible advantage, andfour basis
vectors began to over-fit to the data we collected from the real robot, and
started to perform worse.



Metric Path Learned Centering No Centering Hand-tuned Centering

Loop Time (sec)
1 31.65± 2.43 46.70± 5.94 34.33± 1.19
2 20.50± 0.18 32.10± 1.79 31.69± 0.45
3 25.58± 1.46 40.07± 0.62 28.57± 2.21

Foot Hit RMSE (sec)
1 0.092± 0.009 0.120± 0.013 0.098± 0.009
2 0.063± 0.007 0.151± 0.016 0.106± 0.010
3 0.084± 0.006 0.129± 0.007 0.097± 0.006

Distance RMSE (cm)
1 1.79± 0.09 2.42± 0.10 1.84± 0.07
2 1.03± 0.36 2.80± 0.41 1.98± 0.21
3 1.58± 0.11 2.03± 0.07 1.85± 0.16

Angle RMSE (rad)
1 0.079± 0.006 0.075± 0.009 0.067± 0.013
2 0.070± 0.011 0.070± 0.002 0.077± 0.006
3 0.046± 0.007 0.058± 0.012 0.071± 0.009

TABLE I
PERFORMANCE OF THE DIFFERENT CENTERING METHODS ON EACH OF THETHREE BENCHMARK PATHS,

AVERAGED OVER 5 RUNS, WITH 95% CONFIDENCE INTERVALS.
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Fig. 3. Trajectory and center offsets for the learned controller.

on these different tasks, we used four metrics: 1) the amountof
time takes for the robot to complete an entire loop around the
circle; 2) the root mean squared difference of of the foot hits
(i.e., the time difference between when the two moving feet
hit the ground); 3) the root mean squared error of the robot’s
Euclidean distance from the desired path; and 4) the root mean
squared difference between the robot’s desired angle and its
actual angle.

Note that these metrics obviously depend on more than
just the balancing controller — speed, for example, will of
course depend on the actual speed parameters of the trot gait.
However, we found that good parameters for everything but the
balancing controller were fairly easy to choose, and essentially
the same values were optimal, regardless of the balancing pol-
icy used. Therefore, the differences in speed/accuracy between
the different controllers we present is entirely a functionof
how well the controller is capable of balancing — for example,
if the robot is unable to balance it will slip frequently and its
speed will be much slower than if it can balance well.

We also note that prior to beginning our work on learn-
ing basis functions, we spent a significant amount of time
attempting to hand-code a centering controller for the robot.
We present results for this hand-tuned controller, since we
feel it represents an accurate representation of the performance
attainable by hand tuning parameters. We also evaluated the
performance of the omnidirectional gait with no centering.

Figure 2 shows pictures of the robots following some of the
benchmark paths, as well as an additional star-shaped path.
Videos of these experiments are available at:

http://www.stanford.edu/˜kolter/omnivideos

Table I shows the performance of each centering method,
for each of the four metrics, on all three benchmark paths.12

As can be seen, the learned controller outperforms the other
methods in nearly all cases. As the distance and angle errors
indicate, the learned controller was able to track the desired
trajectory fairly accurately. Figure 3(a) shows the actualand
desired position and orientation a run of the learned centering
controller on the first path. Figure 3(b) shows the parametrized
center offset predictor trained on data from the real dog. This
figure partially explains why hand-tuning controller can be
so difficult: at higher turning angles the proper centers form
unintuitive looping patterns.

VI. CONCLUDING REMARKS

In this paper, we have presented a method for using a
(possibly inaccurate) simulator to learn a low-dimensional
subspace of policies that spans the potential variations in
model dynamics. We formulate this task as a optimization
problem that can be solved efficiently via the Reduced Rank
Regression algorithm. We demonstrate a successful application
of this technique to the problem of omnidirectional path fol-
lowing for a quadruped robot, and demonstrate improvement
over both a method with no balancing control, and a hand-
tuned controller. This technique enables us to achieve, to the
best of our knowledge, the first omnidirectional controller
with parameters optimized simultaneously for all directions
of motion and turning rates.
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APPENDIX

The omnidirectional controller is parameterized by 15 pa-
rameters:

• (fx, fy, fz): the x, y, z coordinates of the front left foot
in its center position (other feet are properly reflected).

• (bx, by, bz): maximum size of the foot locus boxes.
• (xoff , yoff): x andy offfsets for the center of mass of the

robot. As discussed in the paper, these are not specified
to be constant values, but depend on the direction angle
and turning rate.

• t: time it takes for one cycle through the gait (moving all
four feet).

• dang, ddist: thed parameters specify how closely the dog
should follow its path spline (see below).

• ωmax, cω: turning parameters. We restrict the turning
angle of the robotω to always be less thanωmax. cω
is a factor that multiplies the turning angle (see below).

• ψ, ω: direction angle and turning angle for the robot
respectively. Determined by the position of the robot
relative to the path spline.

During the firstt/2 seconds of the period, the robot moves
the front left and back right legs in the in the box pattern,
while moving the front right and back left legs on the ground
(and vice versa during the nextt/2 seconds). The legs are
moved at a constant velocity along each side of the box, at
whatever speed is necessary to move them through the box
pattern in the allotted time.

Thex andy positions of the ends of the box relative to the
foot are determined byψ andω. Let αFL be the desired tilt
angle for the front left foot. The two endpoints of the foot’s
motion are given by

(x0, y0) = (−(bx/2) cos(αFL),−(by/2) sin(αFL))

(xt/2, yt/2) = ((bx/2) cos(αFL), (by/2) sin(αFL)).

More intuitively, we can think of rotating the box for the
front foot by αFL and setting it’s length so that it lies in the
ellipse formed by the tangent pointsbx and by. The desired
tilt is given by the following formula (with the signs reversed
appropriatedly for the other feet):

αFL = ψ + cos(ψ)ω + sin(ψ)ω.

Trajectories for the robot are described as linear splines,
with each point representing a location in two dimensional
space (paths do not have az component), and an angle. The
direction angle of the robot is set to be the direction to the
point on the spline that isddist ahead of the robot. The turning
rate is specified in much the same way: we look at the desired
angle for the point on the splinedang ahead of the robot, and
let ω be cω times the difference between this desired angle
and the current angle of the robot.


