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Abstract— We consider the task of omnidirectional path fol- This results in a high-dimensional class of control poktie
lowing for a quadruped robot: moving a four-legged robot along  which therefore tends to require a prohibitively large antou
any arbitrary path while turning in any arbitrary manner. of data from the real robot in order to learn.

Learning a controller capable of such motion requires learning It b h ier to | this high-di . | poli
the parameters of a very high-dimensional policy, a difficult can be much easier to learn this high-dimensional policy

task on a real robot. Although learning such a policy can be in @ model (or “simulator”) of the system than on the real
much easier in a model (or “simulator”) of the system, it can be robot; there are many advantagesnimdel-based reinforce-
extremely difficult to build a sufficiently accurate simulator. In  ment learning(RL): the simulator can be made deterministic,
this paper we propose a method that uses a (possibly inaccurate)\ye can save and replay states, we can take gradients of the
simulator to identify a low-dimensional subspace of policies that . .

spans the variations in model dynamics. This subspace will parameterg, there is no risk of q§mage to t_he real r,O*?Ot' etc.
be robust to variations in the model, and can be learned on However, it can be extremely difficult to build a sufficiently
the real system using much less data than would be required accurate simulator. Oftentimes a policy learned in the Emu

to learn a policy in the original class. In our approach, we tor will perform very poorly on the real system.

sample several models from a distribution over the kinematic In this paper, we propose a method that makes use of a

and dynamics parameters of the simulator, then formulate an ibly i ¢ imulator to identi low-di X
optimization problem that can be solved using the Reduced Rank (possibly inaccurate) simulator to identify a low-dimes

Regression (RRR) algorithm to construct a low-dimensional class subspace of policies that spans the potential variations in
of policies that spans the major axes of variation in the space of model dynamics. Our method is as follows: First, we draw
controllers. We present a successful application of this technique random samples from distribution over the kinematic and
to the task of omnidirectional path following, and demonstrate 4y namic parameters of the simulator. We learn parameters
improvement over a number of alternative methods, including a for the hiah-di - | policy i h of th imulati
hand-tuned controller. We present, to the best of our knowledge or the high-dimensiona 'po 'CY In each o es.e. simuiation
the first controller capable of omnidirectional path following with ~ models. To learn a low-dimensional class of policies that ca
parameters optimized simultaneously forall directions of motion represent the learned policies across all the sampled sodel
and turning rates. we formulate a dimensionality reduction optimization gesb
that can be solved via the Reduced Rank Regression (RRR)
algorithm. Because this low-dimensional class is capable o

In this paper we consider the task of omnidirectional patepresenting the learned policies in all the different dation
following: moving a four-legged robot along any arbitrarynodels, the policy class is robust to variations in the model
path while turning in any arbitrary manner. Examples of suaktynamics. Finally, we learn a policy in this low-dimensibna
motion include walking in a circle while facing the circle’sclass on the real robot. This requires much less data thaldwou
center, following a straight line while spinning around,amy be required to learn a policy in the original, high-dimemsib
other “dancing” maneuver. In this paper we focus on “trottlass of policies. We present a successful application of
gaits: gaits where the robot moves two feet at a time. this technique to the task of omnidirectional path follogyin

A key technical challenge in building such a robust gait iand demonstrate improvement over a number of alternative
maintaining balance of the robot. Since the trot gait mowes t control methods, including a hand-tuned controller. We als
feet at once, the polygon formed by the supporting feet reslugresent, to the best of our knowledge, the first controller
to a line, and it is very difficult to maintain any standardtista capable of omnidirectional motion with parameters optidiz
or dynamic stability criterion. Fortunately, when exengtia simultaneously forll directions of motion and turning rates
“constant” maneuver — that is, moving in a constant directio— in the next section we clarify exactly how this work differs
while possibly turning at a constant rate — it is possible tvom previous work in quadruped locomotion.
approximately balance the robot by offsetting the center of The rest of this paper is organized as follows. In Section |l
mass by some fixed distance. However, in omnidirectiondl pat
following we are frequently changing the direction of matio “An important concept in this paper is the idea of dmensiorof a control

. . . olicy. This paper focuses on linearly-parametrized pesici- that is, policies

and turning rate, so a complete policy must determine t

) ) - : t are specified by a set of linear coefficients. In this ctts dimension
proper center offset foany given direction and turning rate. of the policy is simply the number of parameters

I. INTRODUCTION



we present background material and related work. In SectionFinally, since balancing the robot is such a key element in
[Il we give an overview of our controller (the full parame@ developing a robust omnidirectional path following cotiag
tion of the controller is given in the Appendix) and preserthe literature on dynamic stability of robots is also very
an online learning algorithm that is capable of learning threlevant. There exist several criteria for ensuring dymami
proper balancing offsets for ariixed direction of motion and stability of legged robots [12, 23]. One of the most well-lmo
turning rate. In Section IV we formally present our methodriteria is to ensure that Zero Moment Point (or ZMP) [29]
for constructing a low-dimensional policy class by sanplin— which is similar to the center of mass projected on to the
from a distribution over simulation models then set up thground plane, except that it accounts for inertial forceggc
optimization problem, and describe our how to find its soluti on the robot — never leaves the supporting polygon. However,
using the Reduced Rank Regression algorithm. In Sectionwhen the robot has only two rounded feet on the ground the
we present and analyze our results on the real robotic systesupporting polygon reduces to a line, making it difficult to
Finally, in Section VI we give concluding remarks. maintain the ZMP exactly on this line. In addition, we found
it difficult to calculate the ZMP precisely on the real roboed
to the inaccuracy of the on-board sensors. For these reasons
A. Quadruped Locomotion this paper we focus on an approximate method for balancing
There has been a great deal of work in recent yeatbg robot.
both in the robotics and machine learning communities, on
guadruped locomotion. Much of the research has focused Bn
static walking (moving one leg at a time, thereby keeping The method we propose in this paper is related to the area of
the robot statically stable) including statically stableitg robust control theory. For a general overview of robust nt
capable of omnidirectional path following [19]. In additio see [31] and [9]. However, our work differs from standard
there has been much work on designing static gaits that gaust control theory in that the typical goal of robust coht
navigate irregular terrain [6, 5, 11, 18]. As a whole this kvoris to find asinglepolicy that performs well in avide varietyof
is generally tangential to the work presented here, since wessible models. In contrast, we make no assumption that any
focus on the dynamic trot gait over flat terrain, which regsir such policy exists — indeed, in our application the optimal
very different approaches. policy depends very much on the particular model dynamics
There has also been a great deal of work on developirg but rather we want to identify aubspaceof policies that
omnidirectional trot gaits, in particular for the Sony AIBOspans the potential variation of model dynamics. In the final
robot. Much of this work is based on a trot gait, originallystep of our method, we do search this subspace to find a policy
developed by Hengst et. al. [13], that is potentially capaifl that is specific to the dynamics of the real system.
moving in any direction while turning at any rate. While the To learn the low-dimensional subspace of policies, we pose
parameters of the gait presented in [13] are hand-tunetk than optimization problem that can be solved via the Reduced
has been much subsequent work on gait optimization of tifank Regression (RRR) algorithm. The RRR setting was first
and similar gaits. Several gait optimization methods haenb discussed in the statistics literature by Anderson [1]niaan
investigated, including evolutionary search methods [84, [15] developed the solution that we apply in this paper,
27], direction set minimization [16] and policy gradientke coined the term “Reduced Rank Regression,” and discussed
niques [17]. However, while the controllers in these workes athe relationship between this algorithm, Canonical Catieh
capableof omnidirectional motion in that they can walk in anyAnalysis (CCA) and Principle Component Analysis (PCA).
direction while turning at any rate, all the works listed a0 RRR is discussed in great detail in [26], and there is a great
focus on optimizing parameters only for osimgle direction deal of active research on this algorithm, both from thecaét
of motion at a time (usually forward walking). Additionallgs [2] and numerical perspectives [10].
noted in [27], gaits optimized for one type of motion typlgal  In the machine learning literature, the problem we formaulat
perform poorly on other maneuvers — for example, a gain be viewed as an instance of multi-task learning [7, 3].
optimized for forward walking typically performs poorly wh However, our setting does differ slightly from the protatg
attempting to walk backwards. In contrast, in this paper waulti-task learning paradigm, since we do not ultimatelyeca
focus on learning a policy that performs well falt directions how well we perform on most of the tasks, except insofar as
of motion and turning rates. it helps us learn the one task we care about — i.e., we don'’t
Another vein of research in dynamic quadruped gaits fotare how well the policies perform in the simulation models,
lows upon work by Raibert [24, 25]. This and more recentist how well the final controller performs on the real system
work [22, 21] achieve dynamic gaits — both trot gaits and Finally, we note that there has been recent work on the ap-
gallop gaits, which include a flight phase — by “hopping’lication of dimensionality reduction techniques to cohaimd
on compliant legs, which typically employ some form ofeinforcement learning. Mahadevan [20] uses Graph Lagtaci
hydraulics. While this is a powerful technique that can allomethods to learn a low-dimensional representation of value
for very fast locomotion, we discovered very quickly that oufunctions on a Markov Decision Process (MDP). Roy et. al.
robot was not capable of generating sufficient force to juni@8] use dimensionality reduction to compactly represest b
off the ground, effectively disallowing such methods. lief states in a Partially Observable MDP. Our work is simila
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a proper center offset, the robot will “limp” visibly while
walking. The challenge is to find a function that determines
the proper center offset for any given direction of motiomnl an
turning rate. That is, given a direction angleand turning
ratew, we want to find functions,, and f,, such that

Toff = fx(¢>w)7 Yoft = f'y(waw)'

Since the direction angle and turning rates are inherently
periodic — i.e., a direction angle ¢fr results in the same
center as an angle df — the Fourier bases are a natural
means of representing these functions. We therefore reres

fz @s

folth,w) = 03 6(4h, w)

whered,, € R¥ is a vector of coefficients and

o(h,w) = [cos(ith) cos(jw), cos(iy)) sin(jw),
sin (i) cos(jw), sin(iy) sin(jw)],

Fig. 1. The LittleDog robot, designed and built by Boston Bgrics.

in spirit, except that we apply dimensionality reductiortie
space of controllers, to learn a low-dimensional represant

of the control policies themselves. h,j=12,...
[1l. A CONTROLLER FOROMNIDIRECTIONAL denotes firstk principle Fourier basis functions of and
PATH FOLLOWING w — here the range of and j are chosen so that the

In this section we present a parametrized gait for tifimension of¢ is also k. The function f, is represented
quadruped robot that is capable of omnidirectional path fdn the same manner, and learning a parametrization of the
lowing. The design builds upon recent work on trot gaits fgiontroller requires learning the coefficierfts and ¢, of this
quadruped locomotion in the robotics and machine learnidgpProximation.
communities [13, 17]. The robot used in this work is shown in With this motivation, we first consider the problem of
Figure 1. The robot, known as “LittleDog,” was designed aninding the center offset for ixeddirection angle and turning
built by Boston Dynamics, Inc and is equipped with an intern&ate. We designed a online learning algorithm that, for fixed
IMU and foot force sensors. State estimation is performed w andw, dynamically adjusts the center offsets during control
a motion capture system that tracks reflective markers on e as to balance the robot. The intuition behind this allgorit
robot. is that if the robot is balanced, then the two moving feet

Our controller uses inverse kinematics to specify locatioshould hit the ground simultaneously. If the two feet do not
for the four feet in Euclidean coordinates relative to theotts  hit the ground simultaneously, then the algorithm looks at
body. While two feet move along the ground, the other two fethich of the two feet hit the ground first, and adjusts the
moving through the air in a box pattern; this moves the robéenter offsets accordingly. If, for example, the back leg hi
forward? We achieve lateral movement by rotating the anglée ground before the front leg, then the algorithm will shif
of all the four feet, and turn by skewing the angles of the frothe center of mass forward, thereby tilting the robot foxvar
and back or left and right feet. We specify paths for the robghd encouraging the front leg to hit the ground sooner. The
as linear splines, with each point specifying a desiredtjosi precise updates are given by
and angle for the robot. The controller is closed-loop: gver )
time step we use the current state estimate to find a direction = off T o(g(ter — ter) + 9(ten — tnL)) 1)
and turning angle that forces the robot to follow the spetifie ~ Yoff := Yot + ag((trL — tBr) — (tFr — tBL))
path. A more detailed description of the gait is given in th\‘lavhere o

. is a learning ratefrr,trr,tBL,tgr are the foot
appendix. g trL, tFR, tBL, tBR

contact times for the four feet respectively, apfr) =
A. Learning To Balance 22 -sgn(x), i.e., a quadratic function that preserves the sign of

We found that by far the most challenging aspect of desigl$ argument. So, for example, if the back left leg hits befor
ing a robust controller was balancing the robot as it movell!® front right,tpr — 5, > 0, SO zog IS increased, shifting
To balance the robot, our controller offsets the center afsngdN€ center of mass forward. The algorithm is similar in $piri

of the robot by some specified amouftyg, yor ). Without to the previously mentmned gait 0pt|m|za_t|on aIg_onthrm f
the Sony AIBO gaits [14, 16, 8, 17, 27] in that it performs
2We also experimented with other locus shapes for moving thetfe¢  online optimization of the gait parameters for a fixed dii@tt
are common in the literature, such_ as a half ellipse or a trapd2@], but angle and turning rate. We implemented this algorithm both
found little difference on our robot in terms of performance. . . .
3In the coordinate system we use, the positivexis points in the direction in simulation and on the actual robot; for the actual robot
that the robot is facing, and the positiyeaxis points to the robot's left. we used foot force sensors to determine when a foot hit the



ground? Convergence to a stable center position is generally  set of parameters now defines a differently perturbed

quite fast, about a minute or two on the real robot (assuming  simulation model.

no adverse situations arise, which we will discuss shortly) 2) In each simulation model, colleat data points, and
Given a collection of direction angles, turning rates, and learn parameters for the high-dimensional policy by

their corresponding offsets, we can learn the coefficiépts least-squares regression.

andé, by least squares regression. Unfortunately, computing3) Use the Reduced Rank Regression algorithm to learn

a sufficient number center offsets on the real robot is a a small set of basis vectors that span the major axes of

time-consuming task. Although the algorithm describedvabo variation in the space of controllers over all the sampled

can converge in about a minute under ideal circumstances, models.

several situations arise that can slow convergence caabige 4) Learn a parametrization of the policy in this low-

Communication with the robot is done over a wireless channel  dimensional class on the real robot.

and packet loss can make the robot slip unexpectedly, whichviore formally, suppose we are given a matrix of feature

causes incorrect adjustments to the robot. Additionally, ectors X e R"** and we collect a set of of output

improper center offset (as would occur before the algorithfactors {y € R"},i = 1,...,m, where each of the

converged) can make the robot move in a way that degradgs’s corresponds to the data points collected from ttre
the joint angle calibration by bashing its feet into the gmu simulator. For example, in the balancing controller présegn
Although it is significantly easier to find proper joint offsén in the previous section, each row &f would contain thek-
simulation, it is difficult to create a simulator that acdet® dimensional Fourier expansion of some angle/turning iaid,
reflects the center offset positions in the real robot. Iddeghe corresponding entry i[y(i) would contain the resulting
we invested a great deal of time trying to learn parametefénter offset — i.e., either.s or y.¢, Since we learn the
for the simulator that reflected the real system as accyratglrametrization of the two functiofi, and f, independently
as possible, but still could not build a simulator that be&fthv — in the ith simulator. We learn the policy parametéfé
sufficiently similarly to the real robot. The method we pr&se R* for the ith simulation model by solving the least squares
in the next section allows us to deal with this problem, anstoblem:

efficiently learn center offsets for the real robot by conirn min ||y(i) _ Xg(i)H% (2)
learning in both simulation and the real robot. 6

which has the well-known solutiof® = (X7 X)~1 X7y,
Since we are trying to estimate fadimensional coefficient
vector, by a well known sample complexity result (see, e.qg.
In this section we present a method for solving the general)), we needQ(k) data points to find a solution.

problem presented in the previous section: given someypolic Considering all then simulator models jointly, we form the
learning task that can be framed as a least-squares problggsign matriced” € R**™ and© € RF*™,

we want to learn a low-dimensional class of policies that can ,

be learned using a very small amount of data from the real Y = [y(l) . ~y(m)} , ©= [9(2) . ~~9(m)}

system. We have at our disposal a simulator of the system, )

but the simulator does not provide an accurate model of tA8d consider the problém

task we wish to solve. Although we focus in this paper on min ||[Y — XO|2. (3)

the application of this method to the specific task of leagnin ©

a policy for omnidirectional path following, the formulatis However, solving this problem is identical to solving eadh o

we present in this section are general. the least squares problems (2) individually for eachf we
The intuition behind our algorithm is that even if it iswant to learn the the coefficients for a policy on the real tpbo

very difficult to learn the precise dynamic parameters ththis approach offers us no advantage.

would make a simulator accurately reflect the real world, Instead, we consider the matricése R¥*¢, B € R,

it may be much easier to specify distribution over the with ¢/ < k and the problem

pptential variations in_ model dynamiesTherefore, even if the min||Y — XABJ|[2. )

simulator does not mimic the real system exactly, by comside A,B F

distribution over the model parameters, it can allow ustiien |, s setting, thet matrix selectd linear combinations of the

a smaller subspace of policies in which to search. The meth@&umns of X, and theB matrix contains the coefficients for

we propose is as follows: these linear combinations. In other words, this approxésat
1) Drawm random samples from a distribution over the dythe coefficients ag(® ~ A, wereb® is theith column of

namic and kinematic parameters of the simulator. Eagh The matrix4 forms a basis for representing the coefficients
sAtthouah the foot the Litled bot _— in all the m simulation models.
oug e Toot sensors on e LittleDog robot are not Ipi ry . .
accurate in many situations, the trot gait hits the feet ih® ground hard The kEy advantage of this approach becomes evident when

enough that the foot sensors are able to function as a simmée@oswitch We consider learning the parametérse R* of a policy on
indicating whether or not the feet have hit the ground.
5This claim is discussed further in Subsection IV-B. SHere, || o ||2. denotes the squared Frobenius nofim,|2, = i Afj.

IV. LEARNING A Low DIMENSIONAL PoLicy
CLASS USING DIMENSIONALITY REDUCTION



the real robot. We approximaté as a linear combination this we collect, from the real system, a small set of datatpoin
of the columns of4, i.e., § = Ab. However, sinced, as y € R? for some (new) set of feature vectaks € RP**, and
defined above, has only columns, we only need to learnsolve the least squares problem

the ¢-dimensional coefficient vectdrin order to approximate
6. Again, by a standard sample complexity result [4], this
requires onlyO(¢) examples, and sincé < k, this greatly

min [}y — X Ab[3

‘ .
reduces the amount of data required to learn the policy on tﬁgr. b eR ..For the reasons me“t'or.‘ed abovecan be
estimated using much less data that it would take to learn

real system. - i .
In order to motivate the exact optimization problem pret-he full coefiicient vectorf € R". After learning b, we

sented in (4), we discuss other possible approaches to gipproximate the robot's policy parameterstas Ab.
problem. First, we could solve (3) to find the least squares Non-uniform Features

solution ®, then run Principal Component Analysis (PCA) to Note that rict £ th del ted ab .
find a set of basis vectors that could accurately represkthieal ote that one restriction of the model as presentec above 1S
that the feature vectot® must be the same for all simulations.

columns of®. However, this approach ultimately minimizes . S .
PP y our particular application of Reduced Rank Regressius, t

the wrong quantity: we do not truly care about the error iH] i t0 b | rict : the dat ot
approximating the coefficien® themselves, but rather the 0€s nat seem fo be overly restriclive, since the data parsts
generated by a simulator. Therefore, we can typically choos

error in approximating the actual data points. Second, wéco : ) .
PP g P the data points to be whatever we desire, and so can simply

run PCA on theY matrix, which would result in a set of trict them to be th | the simulati del
basis vectors that could represent the data points acrbss goict them to be the same across all the simufation models

ki
the different simulation models. However, we would requi',éternatlvely, the framework can be extended to handle the

some way of extending these bases to new data points ﬁ%?e where the different simulation models have different
in the training set, and this can be difficdltinstead, the ediure vectors, though the problem can no longer be solved

L . exactly.

minimization problem (4) truly represents the error qugnti . ) . .
h ; . (4)

that we are interested in — how well our coefficients can LdetIXW denote trﬁ fea.tu.re. vector for théh simulation
approximate the data points — and so we consider this model. We now want fo minimize
problem directly. N () @) An ()12

Despite the fact that the optimization problem (4) is non- %{%Z ly™ — XA (®)
convex, it can be solved efficiently (and exactly) by the =t
Reduced Rank Regression algorithm. We begin by noting thahere b(*) is the ith column of B. This is referred to as the

(4) is identical to the problem Seemingly Unrelated Regressions (SUR) model of Reduced
mine ||Y — XO|2 Rank Regression [26, Chapter 7]. We know of no closed form
S? rank(6) :12 (5) for the solution in this case, but must instead resort to@ppr

imate iterative methods. Note that (8), while not convexdin
The solution to this Reduced Rank Regression problem, (2hd B jointly, is quadratic in either argument alone. Therefore,
is given by we can apply alternating minimization: we first haldfixed
0=X"X)"'xTyvv?t (6) and optimize ovet, then hold theB fixed and optimize over
A; because each step involves unconstrained minimization of
a quadratic form, it can be analytically solved and computed
YIX(XTX)'XxTy. (7) very efficiently. We repeat this process until convergemca t
This result is proved in [26, Theorem 2.2]. Optimal values (%xed p]?mt. Mol_re e_Iaborate algorlthmshtyplcally Impose ;gm
A and B can be read directly from this solution, orm of normalization co_nstramts on the tV.VO matnces_ [ ]'.
We conducted extensive experiments with alternating min-
A=(XTx)"'xTyv B=VT. imization algorithms, when the feature vectors were chosen
to be different across the different simulations, and wenébu
tr?erformance to be nearly identical to the standard caseuior o
particular data set. Since the general method we propose doe
allow for the feature vectors to be the same across all the
simulation models, we focus on the previous setting, where
the problem can be solved exactly.

where the columns oV are the/ principle eigenvectors of

Notice that the Reduced Rank Regression solution can be in
preted as the least squares solutioi” X)~* XTY projected
into the subspace spanned By WhenV is full rank — i.e.,
there is no rank constraint — thénl’” = I, and the solution
naturally coincides with the least squares solution.

After learning A and B, the final step in our algorithm is
to learn a representation of the policy on the real robot. 3o @. Further Discussion

"There are certainly methods for doing this. For example, thetdim There are two elements of this proposed algorithm that
approximation [30] could be used compute a non-parametricoappation warrant further discussion. First, since the approachiresu
to the outputy’ for previously unseen feature vecter. However, this would Specifying a distribution over kinematic and dynamic param
require computing the outputs correspondingetofor all (or at least many) . . .
of the simulators, making this technique less applicable fer teal-time eters of the simulator, the question naturally arises as to

situations we are concerned with. how we may come up with such a distribution, and whether



specifying this distribution is truly easier than simplyding
the “correct” set of parameters for the simulator. However,
in reality it is likely that there does not exigtny set of
parameters for the simulator that reflects the real world. As
mentioned in the previous section, we expended a great deal
of energy trying to match the simulator to the real system
as closely as possible, and still did not achieve a faithful
representation. This is a common theme in robust control:
stochasticity of the simulator is important not only be@aus
we believe the real world to be stochastic to a degree, but
because the stochasticity acts as a surrogate for the utiethde
effects of the real world. Therefore, we use a straightfodva
approach to modeling the distribution over simulators: we
use independent Gaussian distributions over several of the
kinematic and dynamic parameters. This approach worked
very well in practice, as we will show in the next section, and
it was generally insensitive to the variance of the distidns.
Second, in the method presented here, learning the high-
dimensional policy in each perturbed model is framed as a
least-squares regression task. This is advantageousdeeitau
allows us to optimally solve the joint policy learning prebi
over all perturbed models with a rank constraint — squared
error loss is essentially the only loss that can be optimally
solved with such a rank constraint. Were we to employ a
different method for learning the high-dimensional pagin
each perturbed model, such as policy gradient, then we would
have to resort to heuristics for enforcing the rank constrain
the policy coefficient matrix. This may be necessary in some
cases, if the learning task cannot be adapted to a regression
problem, but here we focus on the case where the problem
can be solved optimally, as this was sufficient for our task of Fig. 2. Pictures of the quadruped robot following severahga
omnidirectional path following.

proper center offset for a variety of fixed directions andhiog
V. EXPERIMENTAL RESULTS ratest® In our experiments, we constrained the centering func-
In this section we present experimental results on applyiign (in both ther andy directions), to be a linear combination
our method to learn a controller for omnidirectional patRf the first 49 Fourier bases of the direction angle and tgrnin
following. In particular, we apply the technique proposed irate. We then applied the Reduced Rank Regression algorithm
the previous section to the task of |earning a ba|ancingtfunc to learn a low-dimensional representation of this function
for the controller, as described in Section Ill. The phykicdvith only 2 parameters, effectively reducing the number of
robot we used is described above in Section IIl. The simulat@arameters by more than 95%Finally, to learn a policy
we built is based on the physical specifications of the rohdt a0n the actual robot, we used the online centering algorithm t
uses the Open Dynamics Engine (ODE) physics environfherffompute proper center locations for 12 fixed maneuvers on the
Our experimental design was as follows: We first samplé@bot and used these data points to estimate the paraméters o
100 simulation models from a distribution over the simulatdhe low-dimensional policy.
parameterS.In each of these simulation models, we used the T0 evaluate the performance of the omnidirectional gait and
online centering algorithm described in Section 11l to fite: t the learned centering function, we used three benchmatk pat
splines: 1) moving in a circle while spinning in a direction
SODE is available at http:/www.ode.org. opposite to the circle’s curvature; 2) moving in a circlégaéd

9In greater detail, we varied the simulators primarily by addinconstant with the circle’s tangent curve; and 3) moving in a circle
bias to each of the joint angles, where these bias terms wemmlasd ’

from a Gaussian distribution. We also experimented with ingryseveral keeping a fixed heading. To quantify performance of the robot
other parameters, such as the centers of mass, weights, sp&nek friction

coefficients, but found that none of these has as great art effethe resulting 10For each model, we generated 100 data points, with turninigasgaced
policies as the joint biases. This is somewhat unsurprisimge the real robot evenly between -1.0 and 1.0, and direction angles from 2rto

does exhibit constant joint biases. However, we reitetmecaveat mentioned  1Two bases was the smallest number that achieved a good centngih

in the previous section: it is not simply that we need to ledmdorrect joint the data we collected: one basis vector was not enough, Hasie vectors
biases in order to achieve a perfect simulator; rather, thelteesuggest that performed comparably to two, but had no visible advantage,fandbasis
perturbing the joint biases results in a class of policiext th robust to the vectors began to over-fit to the data we collected from thé na&laot, and
typical variations in model dynamics. started to perform worse.



Metric Path | Learned Centering No Centering  Hand-tuned Centering
1 31.65+ 2.43 46.70+ 5.94 34.33+ 1.19
Loop Time (sec) 2 20.50+ 0.18 32.10+ 1.79 31.69+ 0.45
3 25.58 + 1.46 40.07+ 0.62 28.57+ 2.21
1 0.092+ 0.009 0.120+ 0.013 0.098+ 0.009
Foot Hit RMSE (sec)| 2 0.063+ 0.007 0.151+ 0.016 0.106+ 0.010
3 0.084 + 0.006 0.129+ 0.007 0.097+ 0.006
1 1.79+ 0.09 2424+ 0.10 1.84+ 0.07
Distance RMSE (cm)| 2 1.03+ 0.36 2.80+ 0.41 1.98+ 0.21
3 158+ 0.11 2.03+ 0.07 1.85+ 0.16
1 0.079+ 0.006 0.075+ 0.009 0.067+ 0.013
Angle RMSE (rad) 2 0.070+ 0.011 0.070+ 0.002 0.077+ 0.006
3 0.046 + 0.007 0.058+ 0.012 0.071+ 0.009
TABLE |

PERFORMANCE OF THE DIFFERENT CENTERING METHODS ON EACH OF THEHREE BENCHMARK PATHS
AVERAGED OVERD5 RUNS, WITH 95% CONFIDENCE INTERVALS

Table | shows the performance of each centering method,
for each of the four metrics, on all three benchmark paths.
As can be seen, the learned controller outperforms the other
methods in nearly all cases. As the distance and angle errors
indicate, the learned controller was able to track the ddsir
trajectory fairly accurately. Figure 3(a) shows the actaadl
o desired position and orientation a run of the learned ceger
controller on the first path. Figure 3(b) shows the paramedri
center offset predictor trained on data from the real dogs Th
figure partially explains why hand-tuning controller can be
so difficult: at higher turning angles the proper centersnfor
unintuitive looping patterns.

on these different tasks, we used four metrics: 1) the amafunt
time takes for the robot to complete an entire loop around the
circle; 2) the root mean squared difference of of the fod hit In this paper, we have presented a method for using a
(i.e., the time difference between when the two moving fe@bossibly inaccurate) simulator to learn a low-dimensiona
hit the ground); 3) the root mean squared error of the robosibspace of policies that spans the potential variations in
Euclidean distance from the desired path; and 4) the roobhmeaodel dynamics. We formulate this task as a optimization
squared difference between the robot’s desired angle andptoblem that can be solved efficiently via the Reduced Rank
actual angle. Regression algorithm. We demonstrate a successful apiptica

Note that these metrics obviously depend on more thaf this technique to the problem of omnidirectional path fol
just the balancing controller — speed, for example, will abwing for a quadruped robot, and demonstrate improvement
course depend on the actual speed parameters of the trot gaiér both a method with no balancing control, and a hand-
However, we found that good parameters for everything ket ttuned controller. This technique enables us to achievehdo t
balancing controller were fairly easy to choose, and e&snt best of our knowledge, the first omnidirectional controller
the same values were optimal, regardless of the balancing peith parameters optimized simultaneously for all direstio
icy used. Therefore, the differences in speed/accuraeydset of motion and turning rates.
the different controllers we present is entirely a functimhn
how well the controller is capable of balancing — for example
if the robot is unable to balance it will slip frequently and i  Thanks to Morgan Quigley for help filming the videos and
speed will be much slower than if it can balance well. to the anonymous reviewers for helpful suggestions. Thikwo

We also note that prior to beginning our work on learnyas supported by the DARPA Learning Locomotion program
ing basis functions, we spent a significant amount of timghder contract number FA8650-05-C-7261.
attempting to hand-code a centering controller for the tobo
We present results for this hand-tuned controller, since we
feel it represents an accurate representation of the peafite 11 1\, Anderson. Estimating linear restrictions on regies coefficients
attainable by hand tuning parameters. We also evaluated the for multivariate normal distributionsAnnals of Mathematical Statistics
performance of the omnidirectional gait with no centering. 22(3):327-351, 1951.

Figure 2 shows pictures of the rObOt.s.fo”OWIng some of thelzThe foot hit errors should not be interpreted too literaflithough they do
benchmark paths, as well as an additional star-shaped pPgfh. 4 sense of the difference between the three controtieesfoot sensors

Videos of these experiments are available at: are rather imprecise, and a few bad falls greatly affect tterame. They
therefore should not be viewed as an accurate reflectioneofabt timings

in a typical motion.

,,,,,,,,,,,,,,

(a) Desired and actual trajectories (b) Parametric center offset curves
for the learned controller on path 1. for several different turning angles.

Fig. 3. Trajectory and center offsets for the learned cdletro

VI. CONCLUDING REMARKS
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