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Abstract

Algorithms for tracking concept drift are important for
many applications. We present a general method based
on the Weighted Majority algorithm for using any on-
line learner for concept drift. Dynamic Weighted Major-
ity (DWM) maintains an ensemble of base learners, pre-
dicts using a weighted-majority vote of these “experts”,
and dynamically creates and deletes experts in response to
changes in performance. We empirically evaluated two ex-
perimental systems based on the method using incremental
naive Bayes and Incremental Tree Inducer (ITI) as experts.
For the sake of comparison, we also included Blum’s imple-
mentation of Weighted Majority. On the STAGGER Concepts
and on the SEA Concepts, results suggest that the ensemble
method learns drifting concepts almost as well as the base
algorithms learn each concept individually. Indeed, we re-
port the best overall results for these problems to date.

1. Introduction

Learning algorithms that track concept drift [23] are im-
portant for many domains. Such algorithms must be appli-
cable to a variety of problems, both large and small. They
must be robust to noise. Finally, they must converge quickly
to target concepts with high accuracy.

In this paper, we present an ensemble method that uses
on-line learning algorithms to track drifting concepts. It
is based on the Weighted Majority algorithm [15], but we
added mechanisms to create and delete experts dynamically
in response to changes in performance. Hence, we call this
new method Dynamic Weighted Majority (DWM).
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permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work in
other works must be obtained from the IEEE.

Using an incremental version of naive Bayes and Incre-
mental Tree Inducer [25] as base algorithms, we evaluated
the method using two synthetic problems involving concept
drift: the STAGGER Concepts [23] and the “SEA Concepts”,
a problem recently proposed in the data mining commu-
nity [24]. For the sake of comparison, we also evaluated
Blum’s [3] implementation of Weighted Majority on the
STAGGER Concepts. We did so because it is an obvious
evaluation that to our knowledge has never been published.
Our results suggest that DWM learns drifting concepts al-
most as well as the base algorithms learn each concept indi-
vidually (i.e., with perfect forgetting).

We make three contributions. First, we present a gen-
eral method for using any on-line learning algorithm for
problems involving concept drift. Second, we conducted
a thorough empirical study of the method, which included
two incremental learners as base algorithms, two synthetic
problems that have appeared in the literature, and five other
methods for the sake of comparison. Third, because of
our comprehensive evaluation, we firmly place our results
in context with those reported previously. To the best of
our knowledge, we present the best overall results for these
problems to date.

2. Background and Related Work

The on-line learning task is to acquire a set of con-
cept descriptions from labeled training data distributed over
time. This type of learning is important for many applica-
tions, such as computer security, intelligent user interfaces,
and market-basket analysis. An important class of problems
for on-line learning involves target concepts that change
over time [23]. For instance, customer preferences change
as new products and services become available. Algorithms
for coping with concept drift must converge quickly and ac-
curately to new target concepts, while being efficient in time
and space.
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Researchers have proposed and evaluated several algo-
rithms for coping with concept drift. STAGGER [23] was
the first designed expressly for concept drift, as were many
of the algorithms that followed, such as FLORA2 [26], AQ-
PM [18], AQ11-PM [19], and AQ11-PM-WAH [17].

Although researchers have not yet established the degree
to which these algorithms scale to large problems, some
have been designed expressly for learning time-varying
concepts from large data sets [11,24]. Other algorithms are
amendable to such problems because of their formal prop-
erties, at least in theory [3, 14, 15]. One such algorithm in
this category is Weighted Majority [15]. It is a method for
weighting and combining the decisions of “experts”, each
of which is a learning method. For instance, Blum [3] used
pairs and triples of features as experts, which returned the
majority vote over the most recent k predictions.

The algorithm begins by creating a set of experts and
assigning a weight to each. When a new instance arrives,
the algorithm passes it to and receives a prediction from
each expert. The algorithm predicts based on a weighted-
majority vote of the expert predictions. If an expert incor-
rectly classifies the example, then the algorithm decreases
its weight by a multiplicative constant. Winnow [14] is sim-
ilar to Weighted Majority, except that experts may abstain,
and thus have been called “specialists” [3].

Blum [3] evaluated variants of Weighted Majority and
Winnow on a calendar-scheduling task and results sug-
gested that the algorithms responded well to concept drift
and executed fast enough to be useful for real-time applica-
tions. However, using pairs of features requires

(

n
2

)

experts,
where n is the number of relevant features (i.e., attribute-
value pairs), which makes the direct application of these im-
plementations impractical for most data mining problems.
In one case, when learning the scheduling preferences of
one user using 34 attributes, Weighted Majority and Win-
now required 59,731 experts and specialists, respectively.

The advantage of Weighted Majority and Winnow is that
they provide a general scheme for weighting any fixed col-
lection of experts. However, since there are no mechanisms
for dynamically adding or removing new experts or special-
ists, they are restricted to problems for which we can deter-
mine a priori the number required. We provide a remedy
in the next section, and in Section 4.1, we show that by us-
ing more sophisticated base algorithms, we can reduce the
number of experts.

Weighted Majority and Winnow are ensemble methods,
and in an off-line setting, such methods create individual
classifiers and combine the predictions of these classifiers
into a single prediction. For example, bagging [4] involves
sampling with replacement from a data set, building a clas-
sifier using each sample, and predicting the majority pre-
diction of the individual classifiers. Boosting [9] likewise
creates a series of classifiers, albeit with a different method,

weighting each classifier based on its performance. Several
empirical evaluations suggest that ensembles perform better
than do single classifiers [1, 5, 9, 21].

More recently, there has been work on ensemble meth-
ods for on-line learning tasks [8] and for concept drift [24].
Unfortunately, in an on-line setting, it is less clear how to
apply ensemble methods directly. For instance, with bag-
ging, when one new example arrives that is misclassified,
it is too inefficient to resample the available data and learn
new classifiers. One solution is to rely on the user to specify
the number of examples from the input stream for each base
learner [7], but this approach assumes we know a great deal
about the structure of the data stream and is likely to be im-
practical for drifting concepts. There are on-line boosting
algorithms that reweight classifiers [8], but these assume a
fixed number of classifiers. Again, this could be a strong
assumption when concepts change, but we are unaware of
any on-line boosting approaches that have been applied to
the problem of concept drift.

The Streaming Ensemble Algorithm (SEA) [24] copes
with concept drift with an ensemble of C4.5 classifiers [22].
SEA reads a fixed amount of data and uses it to create a new
classifier. If this new classifier improves the performance
of the ensemble, then it is added. However, if the ensem-
ble contains the maximum number of classifiers, then the
algorithm replaces a poorly performing classifier with the
new classifier. Performance is measured over the most re-
cent predictions and is based on the performance of both the
ensemble and the new classifier.

Unfortunately, there are problems with this approach.
One is that members of the ensemble stop learning after be-
ing formed. This implies that a fixed period of time will
be sufficient for learning all target concepts. In addition, if
concepts drift during this fixed period of time, the learner
may not be able to acquire the new target concepts. Finally,
replacing the worst performing classifier in an unweighted
ensemble may not yield the fastest convergence to new tar-
get concepts. In the next section, we describe a new en-
semble method that copes with concept drift and addresses
these problems.

3. DWM: A New Ensemble Method for Concept
Drift

Dynamic Weighted Majority (DWM), shown in Figure 1,
maintains as its concept description an ensemble of learning
algorithms, each referred to as an expert and each with an
associated weight. Given an instance, the performance el-
ement polls the experts, each returning a prediction for the
instance. Using these predictions and expert weights, DWM

returns as the global prediction the class label with the high-
est accumulated weight.

The learning element, given a new training example, first
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Dynamic-Weighted-Majority( {~x, y}1n )

{~x, y}1n: training data, feature vector and class label
β : factor for decreasing weights, 0 ≤ β < 1
c ∈ N

∗: number of classes
{e, w}1m: set of experts and their weights
Λ, λ ∈ {1, . . . , c}: global and local predictions
~σ ∈ R

c: sum of weighted predictions for each class
θ: threshold for deleting experts
p: period between expert removal, creation, and

weight update

for i = 1, . . . , n

~σ ← 0
for j = 1, . . . , m

λ = Classify(ej , ~xi)
if (λ 6= yi and i mod p = 0)

wj ← βwj

σλ ← σλ + wj

end;
Λ = argmaxj σj

if (i mod p = 0)
w ← Normalize-Weights(w)
{e, w} ← Delete-Experts({e, w}, θ)
if (Λ 6= yi)

m← m + 1
em ← Create-New-Expert()
wm ← 1

end;
end;
for j = 1, . . . , m

ej ← Train(ej , ~xi)
output Λ

end;
end.

Figure 1. Algorithm for dynamic weighted
majority (DWM).

polls each expert in the manner described previously. If an
expert predicts incorrectly, then its weight is reduced by the
multiplicative constant β.

DWM then determines the global prediction. If it is incor-
rect, then the algorithm creates a new expert with a weight
of one. The algorithm normalizes expert weights by uni-
formly scaling them such that the highest weight will be
equal to one. This prevents any newly added experts from
dominating the decision making of existing ones. The al-
gorithm also removes experts with weights less than the
user-defined threshold θ. Finally, DWM passes the train-
ing example to each expert’s learning element. Note that
normalizing weights and incrementally training all experts
gives the base learners an opportunity to recover from con-
cept drift. Large and noisy problems required the parameter
p, which governs the frequency that DWM creates experts,

removes them, and updates their weights (i.e., reduction and
normalization.)

We implemented DWM using two different base learn-
ers: an incremental version of naive Bayes and an incre-
mental decision-tree learner. For symbolic attributes, our
incremental version of naive Bayes (NB) stores as its con-
cept description counts for the number of examples of each
class and for each attribute value given the class. Learn-
ing, therefore, entails incrementing the appropriate counts
given the new instance. During performance, the algorithm
uses the stored counts to compute the prior probability of
each class, P (Ci), and the conditional probability of each
attribute value given the class, P (vj |Ci). Then, under the
assumption that attributes are conditionally independent, it
uses Bayes’ rule to predict the most probable class, C, given
by

C = argmax
Ci

P (Ci)
∏

j

P (vj |Ci).

For continuous attributes, our implementation stores for
each class the sum of the attribute values and the sum of
the squared values. Learning simply entails adding an at-
tribute’s value and the square of that value to the appropri-
ate sum. During performance, the implementation uses the
example count and the sums to compute the mean (µ) and
variance (σ2). Then, assuming that the jth attribute’s values
are normally distributed, it computes

P (vj |Ci) = ∆vj
1√

2πσ2
e−(vj−µ)2/2σ2

,

where ∆vj is the size of interval in which the random vari-
able for the attribute lies. (See John and Langley [12] for
details.) We will refer to the system with naive Bayes as
DWM-NB.

The Incremental Tree Inducer (ITI) [25] is a complex
algorithm, so we will be unable to describe it fully here.
Briefly, ITI uses as its concept description a decision tree
with only binary tests. In internal nodes, ITI stores fre-
quency counts for symbolic attributes and a list of observed
values for continuous attributes. In leaf nodes, it stores ex-
amples. ITI updates a tree by propagating a new example to
a leaf node. During the descent, the algorithm updates the
information at each node, and upon reaching a leaf node,
determines if the tree should be extended by converting the
leaf node to a decision node. A secondary process examines
whether the tests at each node are most appropriate, and if
not, restructures the tree accordingly. We will refer to the
system with ITI as DWM-ITI.

4. Empirical Study and Results

In this section, we present experimental results for DWM-
NB and DWM-ITI. We evaluated both systems on the STAG-
GER Concepts [23], a standard benchmark for evaluating

3



how learners cope with drifting concepts. We also included
Blum’s implementation of Weighted Majority [3] for the
sake of comparison. We know of no published results for
this algorithm on the STAGGER Concepts. Finally, in an ef-
fort to determine how our method scales to larger problems
involving concept drift, we also evaluated DWM-NB on the
SEA Concepts [24], a problem recently proposed in the data
mining community.

We did not include any UCI data sets [2] in our eval-
uation because naive Bayes, ITI, and ensemble methods
in general, have been well studied on many of these tasks
(e.g., [1,5,13,16,21,24,25]). Instead, we chose to evaluate
the methods on problems involving concept drift, on which
their performance is less understood.

4.1. The STAGGER Concepts

The STAGGER Concepts [23] comprise a standard bench-
mark for evaluating a learner’s performance in the presence
of concept drift. Each example consists of three attribute
values: color ∈ {green, blue, red }, shape ∈ {triangle, cir-
cle, rectangle}, and size ∈ {small, medium, large}. The
presentation of training examples lasts for 120 time steps,
and at each time step, the learner receives one example. For
the first 40 time steps, the target concept is color = red ∧
size = small. During the next 40 time steps, the target con-
cept is color = green ∨ shape = circle. Finally, during the
last 40 time steps, the target concept is size = medium ∨
size = large.

To evaluate the learner, at each time step, one ran-
domly generates 100 examples of the current target con-
cept, presents these to the performance element, and com-
putes the percent correctly predicted. In our experiments,
we repeated this procedure 50 times and averaged the accu-
racies over these runs. We also computed 95% confidence
intervals.

We evaluated DWM-NB, DWM-ITI, and Blum’s Weighted
Majority [3] with pairs of features as experts on the STAG-
GER Concepts. All of the Weighted Majority algorithms
halved an expert’s weight when it made a mistake (i.e.,
β = 0.5). For Blum’s Weighted Majority, each expert main-
tained a history of only its last prediction (i.e., k = 1), un-
der the assumption that this setting would provide the most
reactivity to concept drift. Finally, for DWM, we set it to up-
date its weights and create and remove experts every time
step (i.e., p = 1). The algorithm removed experts when
their weights fell below 0.01 (i.e., θ = 0.01). Pilot stud-
ies indicated that these were the optimal settings for p and
k; Varying β affected performance little; The selected value
for θ did not affect accuracy, but did reduce the number of
experts considerably.

For the sake of comparison, in addition to these algo-
rithms, we also evaluated naive Bayes, ITI, naive Bayes
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Figure 2. Predictive accuracy for DWM-NB on
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Figure 3. Predictive accuracy for DWM-ITI on
the STAGGER Concepts.

with perfect forgetting, and ITI with perfect forgetting. The
“standard” or “traditional” implementations of naive Bayes
and ITI provided a worst-case evaluation, since these sys-
tems have not been designed to cope with concept drift and
learn from all examples in the stream regardless of the tar-
get concept. The implementations with perfect forgetting,
which is the same as training the methods on each target
concept individually, provided a best-case evaluation, since
the systems were never burdened with examples or concept
descriptions from previous target concepts.

Figure 2 shows the results for DWM-NB on the STAGGER

Concepts. As expected, naive Bayes with perfect forget-
ting performed the best on all three concepts, while naive
Bayes without forgetting performed the worst. DWM-NB

performed almost as well as naive Bayes with perfect for-
getting, which converged more quickly to the target con-
cept. Nonetheless, by time step 40 for all three target con-
cepts, DWM-NB performed almost as well as naive Bayes
with perfect forgetting. (We place these results in context
with related work in the next section.)

DWM-ITI performed similarly, as shown in Figure 3,
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achieving accuracies nearly as high as ITI with perfect for-
getting. DWM-ITI converged more quickly than did DWM-
NB to the second and third target concepts, but if we com-
pare the plots for naive Bayes and ITI with perfect forget-
ting, we see that ITI converged more quickly to these target
concepts than did naive Bayes. Thus, the faster convergence
is due to differences in the base learners rather than to some-
thing inherent to DWM.

In Figure 4, we present the average number of experts
each system maintained over the fifty runs. On average,
DWM-ITI maintained fewer experts than did DWM-NB, and
we attribute this to the fact that ITI performed better on
the individual concepts than did naive Bayes. Since naive
Bayes made more mistakes than did ITI, DWM-NB created
more experts than did DWM-ITI. We can also see in the fig-
ure that the rates of removing experts is roughly the same
for both learners.

Finally, Figure 5 shows the results from the experiment
involving Blum’s implementation of Weighted Majority [3].
This learner outperformed DWM-NB and DWM-ITI on the

first target concept, performed comparably on the second,
and performed worse on the third. We evaluated Blum’s
implementation of Weighted Majority that used pairs of fea-
tures as experts. The STAGGER Concepts consist of three
attributes, each taking one of three possible values. There-
fore, this implementation of Weighted Majority maintained
(

9
2

)

= 36 experts throughout the presentation of examples,
as compared to the maximum of six that DWM-NB main-
tained. Granted, pairs of features are much simpler than the
decision trees that ITI produced, but our implementation of
naive Bayes was quite efficient, maintaining twenty inte-
gers for each expert. There were occasions when Weighted
Majority used less memory than did DWM-NB, but we antic-
ipate that using more sophisticated classifiers, such as naive
Bayes, instead of pairs of features, will lead to scalable al-
gorithms, which is the topic of the next section.

4.2. Performance on a Large Data Set with Drift

To determine how well DWM-NB performs on larger
problems involving concept drift, we evaluated it using a
synthetic problem recently proposed in the data mining
community [24]. This problem, which we call the “SEA

Concepts”, consists of three attributes, xi ∈ R such that
0.0 ≤ xi ≤ 10.0. The target concept is x1 + x2 ≤ b, where
b ∈ {7, 8, 9, 9.5}. Thus, x3 is an irrelevant attribute.

The presentation of training examples lasts for 50,000
time steps. For the first fourth (i.e., 12,500 time steps), the
target concept is with b = 8. For the second, b = 9; the
third, b = 7; and the fourth, b = 9.5. For each of these four
periods, we randomly generated a training set consisting of
12,500 examples. In one experimental condition, we added
10% class noise; in another, we did not. We also randomly
generated 2,500 examples for testing. At each time step, we
presented each method with one example, tested the result-
ing concept descriptions using the examples in the test set,
and computed the percent correct. We repeated this proce-
dure ten times, averaging accuracy over these runs. We also
computed 95% confidence intervals.

On this problem, we evaluated DWM-NB, naive Bayes,
and naive Bayes with perfect forgetting. We set DWM-NB

to halve the expert weights (i.e., β = 0.5) and to update
these weights and to create and remove experts every fifty
time steps (i.e., p = 50). We set the algorithm to remove
experts with weights less than 0.01 (i.e., θ = 0.01).

In Figure 6, we see the predictive accuracies for DWM-
NB, naive Bayes, and naive Bayes with perfect forgetting on
the SEA Concepts with 10% class noise. As with the STAG-
GER Concepts, naive Bayes performed the worst, since it
had no method of removing outdated concept descriptions.
Naive Bayes with perfect forgetting performed the best and
represents the best possible performance for this imple-
mentation on this problem. DWM-NB achieved accuracies
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nearly equal to those achieved by naive Bayes with perfect
forgetting.

Finally, Figure 7 shows the number of experts that DWM-
NB maintained during the runs with and without class noise.
Recall that DWM creates an expert when it misclassifies an
example. In the noisy condition, since 10% of the exam-
ples had been relabeled, DWM-NB made more mistakes and
therefore created more experts than it did in the condition
without noise. In the next section, we analyze these results
and place them in context with related work.

5. Analysis and Discussion

In Section 4.1, we presented results for DWM-NB and
DWM-ITI on the STAGGER Concepts. In this section, we fo-
cus discussion on DWM-ITI, since it performed better than
did DWM-NB on this problem. Researchers have built sev-
eral systems for coping with concept drift and have evalu-
ated many of them on the STAGGER Concepts. For instance,

on the first target concept, DWM-ITI did not perform as well
as did FLORA2 [26]. However, on the second and third tar-
get concepts, it performed notably better than did FLORA2,
not only in terms of asymptote, but also in terms of slope.

DWM-ITI and AQ-PM [18] performed identically on the
first target concept, but DWM-ITI significantly outperformed
AQ-PM on the second and third concepts, again in terms of
asymptote and slope. AQ11 [20], although not designed to
cope with concept drift, outperformed DWM-ITI in terms of
asymptote on the first concept and in terms of slope on the
third, but on the second concept, performed significantly
worse than did DWM-ITI [19]. Finally, comparing to AQ11-
PM [19] and AQ11-PM-WAH [17], DWM-ITI did not perform
as well on the first target concept, performed comparably on
the second, and converged more quickly on the third.

Overall, we concluded that DWM-ITI outperformed these
other learners in terms of accuracy, both in slope and
asymptote. In reaching this conclusion, we gave little
weight to performance on the first concept, since most
learners can acquire it easily and doing so requires no mech-
anisms for coping with drift. On the second and third con-
cepts, with the exception of AQ11, DWM-ITI performed as
well or better than did the other learners. And while AQ11
outperformed DWM-ITI in terms of slope on the third con-
cept, this does not mitigate AQ11’s poor performance on the
second.

We attribute the performance of DWM-ITI to the train-
ing of multiple experts on different sequences of examples.
(Weighting experts also contributed, and we will discuss
this topic in detail shortly.) Assume a learner incremen-
tally modifies its concept descriptions as new examples ar-
rive. When the target concept changes, if the new one is
disjoint, then the best policy to learn new descriptions from
scratch, rather than modifying existing ones. This makes
intuitive sense, since the learner does not have to first un-
learn the old concept, and results from this and other empir-
ical studies support this assertion [18, 19]. Unfortunately,
target concepts are not always disjoint, it is difficult to de-
termine precisely when concepts change, and it is challeng-
ing to identify which rules (or parts of rules) apply to new
target concepts. DWM addresses these problems both by in-
crementally updating existing descriptions and by learning
new concept descriptions from scratch.

Regarding our results for the SEA Concepts [24], which
we reported in Section 4.2, DWM-NB outperformed SEA on
all four target concepts. On the first concept, performance
was similar in terms of slope, but not in terms of asymp-
tote, and on subsequent concepts, DWM-NB converged more
quickly to the target concepts and did so with higher ac-
curacy. For example, on concepts 2–4, just prior to the
point at which concepts changed, SEA achieved accuracies
in the 90–94% range, while DWM-NB’s were in the 96–98%
range.
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We suspect this is most likely due to SEA’s unweighted
voting procedure and its method of creating and removing
new classifiers. Recall that the method trains a new clas-
sifier on a fixed number of examples. If the new classifier
improves the global performance of the ensemble, then it is
added, provided the ensemble does not contain a maximum
number of classifiers; otherwise, SEA replaces a poorly per-
forming classifier in the ensemble with the new classifier.

However, if every classifier in the ensemble has been
trained on a given target concept, and the concept changes
to one that is disjoint, then SEA will have to replace at least
half of the classifiers in the ensemble before accuracy on
the new target concept will surpass that on the old. For in-
stance, if the ensemble consists of 20 classifiers, and each
learns from a fixed set of 500 examples, then it would take
at least 5000 additional training examples before the ensem-
ble contained a majority number of classifiers trained on the
new concept.

In contrast, DWM under similar circumstances requires
only 1500 examples. Assume p = 500, the ensemble con-
sists of 20 fully trained classifiers, all with a weight of
one, and the new concept is disjoint from the previous one.
When an example of this new concept arrives, all 20 classi-
fiers will predict incorrectly, DWM will reduce their weights
to 0.5—since the global prediction is also incorrect—and it
will create a new classifier with a weight of one. It will then
process the next 499 examples.

Assume another example arrives. The original 20 ex-
perts will again misclassify the example, and the new ex-
pert will predict correctly. Since the weighted prediction of
the twenty will be greater than that of the one, the global
prediction will be incorrect, the algorithm will reduce the
weights of the twenty to 0.25, and it will again create a new
expert with a weight of one. DWM will again process 499
examples.

Assume a similar sequence of events occurs: another ex-
ample arrives, the original twenty misclassify it, and the two
new ones predict correctly. The weighted-majority vote of
the original twenty will still be greater than that of the new
experts (i.e., 20(0.25) > 2(1)), so DWM will decrease the
weight of the original twenty to 0.125, create a new expert,
and process the next 499 examples. However, at this point,
the three new classifiers trained on the target concept will
be able to overrule the predictions of the original twenty,
since 3(1) > 20(0.125). Crucially, DWM will reach this
state after processing only 1500 examples.

Granted, this analysis of SEA and DWM does not take
into account the convergence of the base learners, and as
such, it is a best-case analysis. The actual number of exam-
ples required for both to converge to a new target concept
may be greater, but the relative proportion of examples will
be similar. This analysis also holds if we assume that DWM

replaces experts, rather than creating new ones. Generally,

ensemble methods with weighting mechanisms, like those
present in DWM, will converge more quickly to target con-
cepts (i.e., require fewer examples) than will methods that
replace unweighted learners in the ensemble.

DWM certainly has the potential for creating a large num-
ber of experts. We used a simple heuristic that added a
new expert whenever the global prediction was incorrect,
which intuitively, should be problematic for noisy domains.
However, even though on the SEA Concepts DWM-NB main-
tained as many as 40 experts at, say, time step 37,500, it
maintained only 22 experts on average over the ten runs,
which is similar to the 20–25 that SEA reportedly stored
[24]. If the number of experts were to reach impractical lev-
els, then DWM could simply stop creating experts after ob-
taining acceptable accuracy; training would continue. Plus,
we could also easily distribute the training of experts to pro-
cessors on a network or in course-grained parallel machine.

One could argue that better performance of DWM-NB

is due to differences between the base learners. SEA was
an ensemble of C4.5 classifiers [22], while DWM-NB, of
course, used naive Bayes as the base algorithm. We re-
futed this hypothesis by running both base learners on each
of the four target concepts. Both achieved comparable ac-
curacies on each concept. For example, on the first tar-
get concept, C4.5 achieved 99% accuracy and naive Bayes
achieved 98%. Since these learners performed similarly, we
concluded that our positive results on this problem were due
not to the superiority of the base learner, but to the mecha-
nisms that create, weight, and remove experts.

6. Concluding Remarks

Tracking concept drift is important for many applica-
tions. In this paper, we presented a new ensemble method
based on the Weighted Majority algorithm [15]. Our
method, Dynamic Weighted Majority, creates and removes
base algorithms in response to changes in performance,
which makes it well suited for problems involving concept
drift. We described two implementations of DWM, one with
naive Bayes as the base algorithm, the other with ITI [25].
Using the STAGGER Concepts, we evaluated both methods
and Blum’s implementation of Weighted Majority [3]. To
determine performance on a larger problem, we evaluated
DWM-NB on the SEA Concepts. Results on these prob-
lems, when compared to other methods, suggest that DWM

maintained a comparable number of experts, but achieved
higher predictive accuracies and converged to those accu-
racies more quickly. Indeed, to the best of our knowledge,
these are the best overall results reported for these problems.

In future work, we plan to investigate more sophisticated
heuristics for creating new experts: Rather than creating one
when the global prediction is wrong, perhaps DWM should
take into account the expert’s age or its history of predic-
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tions. We would also like to investigate another decision-
tree learner as a base algorithm, one that does not main-
tain encountered examples and that does not periodically
restructure its tree; VFDT [6] is a likely candidate. Although
removing experts of low weight yielded positive results for
the problems we considered in this study, it would be benefi-
cial to investigate mechanisms for explicitly handling noise,
or for determining when examples are likely to be from a
different target concept, such as those based on the Hoeffd-
ing bounds [10] present in CVFDT [11]. We anticipate that
these investigations will lead to general, robust, and scalable
ensemble methods for tracking concept drift.
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